
Preface 

 

 
The Revision 5 6809 board was not designed by Bob Applegate.  It is a continuation 

of his previous work and is intended to help the hobby community.  With Bob's 

passing it left the only readily available boards for the SS50 Bus being the 

reproduction SWTPC boards that I make.  Where possible I leave the original 

Corsham manuals intact only making the changes necessary for the upgraded 

boards.  Prior to Bob's passing he had sent me some of his Eagle Design files and 

library files to help speed the development of  my SWTPC replacement motherboard.  

With Bob's design files it was possible to quickly make reproductions of most of his 

boards.  The continued availability of Corsham's boards gives the hobbyist more 

choice in building a retro SS50 system. 

 

 

Frederic Brown 

 

Peripheral Technology 

Retired 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 2 - 

 
Corsham Technologies, LLC 

www.corshamtech.com 

617 Stokes Road, Suite 4-299 

Medford, NJ  08055 

 

6809 CPU Board 

Introduction 
 

Thank you for buying our 6809 CPU board! 

 

This was a big project, and definitely the most complicated hardware project we’ve 

done so far.  At the Vintage Computer Festival Midwest in 2014, I had our first SS-50 

products on display and received a warm welcome.  However, a lot of people said 

they really wanted a 6809 based board, so this is the result of all those requests. 

 

Is this board vintage?  Well, work started in 2014, so technically it is not.  However, 

it uses a design very similar to the original SWTPC 6809 CPU board using parts 

available at that time.  The large RAM and EPROMs are not vintage, particularly the 

128K RAM chip.  The board is vintage in that it uses the SS-50 bus and can plug into 

existing systems or work with other boards of that era. 

 

Using older parts has been a problem because some of them have not been made in 

a long time, so prices are high, conditions of pulled chips are unknown, and we have 

to test a lot more components to verify they actually work as expected.  Fortunately 

all the chips on this board are available from surplus inventories, but eventually 

they will be unavailable. 

Features 
 

 6809 running at 2 MHz. 

 Baud rate generator provides all standard SS-50/SS-30 clocks. 

 One baud rate line can be jumpered for higher speed options. 

 2K, 4K or 6K of EPROM.  SBUG uses 2K, but the other 2K can be enabled for 

user extensions. 

 Dynamic Address Translation that is fully compatible with SWTPC’s scheme. 

 128K of RAM, fixed in banks 0 and 1.  Each bank can be enabled/disabled. 

 A16 to A19 available on the SS-50 bus, individually selectable. 



 - 3 - 

Reset and NMI 
 

In the upper left hand corner of the board is a reset pushbutton switch along with 

jumpers  JP1 (RESET) and JP9 (NMI).  These two jumpers can be wired to external 

buttons on the chassis to provide reset and NMI signals to the processor.  There is 

also a jumper block like SWTPC used for the RESET and NMI.  This can connect to 

the existing wiring in a SWTPC cabinet. 

Baud Rate Selection 
 

The SS-50 bus used five lines for baud rate clocks, while the SS-50C bus allowed 

those lines to be used for either those clocks or the extended addressing lines A16 to 

A19.  Our board allows individual jumper selection for each pin using five jumpers 

located on the lower left hand corner of the board: 

 

Bus Pin Jumper SS-50 (6800) Use SS-50C (6809) Use 

46 JP2 VAR baud VAR  baud or BUSRQ 

47 JP13 VAR baud VAR baud or A19 

48 JP12 1200 baud 1200 baud or A18 

49 JP11 600 baud 600 baud or A17 

50 JP10 300 baud 300 baud or A16 

 

Note that the baud clocks are actually x16, that is, they are 16 times faster than the 

indicating baud. 
 

Because we didn’t want to tie up all those pins, our board is optimized to use pin 46, 

normally the 110 baud line, as a VARiable baud rate line.  You’ll see JP2 allows you 

to select either BUSRQ or VAR, and jumper J6 allows you to configure this line as 

150, 2400, 4800, 9600, 19200 or 38400 baud. 
 

Phew, that’s a lot of options, and might not be very clear at all, so here is our 

recommendation on how to set up those six jumpers to give you a desired baud rate 

and also the full 20 bits of address space: 

 

Jumper Suggested setting Result 

JP10 A16 Gives 17 bit addressing 

JP11 A17 Gives 18 bit addressing 

JP12 A18 Gives 19 bit addressing 

JP13 A19 Gives 20 bit addressing 

JP2 VAR Makes the 110 line one of six selectable 

baud rates 

JP6 (VAR) Your choice Select this to provide your designed 

console baud rate setting.  We use 9600. 



 - 4 - 

EPROM 
 

The original SWTPC 6809 board had a 2K EPROM with SBUG in the top of memory, 

from F800 to FFFF, along with 2 additional EPROM sockets.  Our board has a single 

8K EPROM.  The top 2K of EPROM is always selected. Memory at F000-F7FF and 

E800-EFFF can be enabled by jumpers. V4 and earlier boards used a 2764 EPROM. 

V5 allows for a 2764, 27128 or 27256.  Only 8K is mapped to the processor at a time 

and the lower 2K is blocked from use.  A 27128 will allow  you to switch between 2 

monitor programs such as SBUG and OS9.  With a 27256 you can switch between 4 

monitor programs.  The selection of the monitor is controlled by Jumper JP7 and JP8. 

 

EPROM JP8 JP7 Address Selected 

2764 1 1 0000-1FFF 

27128 0 1  0000-1FFF 

27128 1 1 2000-3FFF 

27256 0 0 0000-1FFF 

27256 1 1 2000-3FFF 

27256 0 1 4000-5FFF 

27256 1 1 6000-7FFF 

 

 

 

 

If you wish to burn your own EPROM, this is where things are located  for a 27C64 

or for each selected part of a 27128 or 27256. 

 

The first 2K is completely unused and is not visible.  The upper 4K is mapped to 

F000-FFFF. 

 

 

 
 

 

Offset 0000 

  Offset 0800 

Offset 1800 At address F800 

At address F000 if Jumper 

installed in JP3 

Lower 2K is never mapped 

to memory 

At address E800 if Jumper 

installed in JP3 

Offset 1000 



 - 5 - 

RAM 
 

The board has 128K of RAM available but must be configured via JP3 on the upper 

left hand side of the board. 
 

Banks 0 and 1 can be enabled or disabled by jumpers.  Typically only RAM at 0000-

FFFF is needed.  FLEX and OS9 Level 1 don't support more.  Should you wish to 

experiment  you can enable the second Bank.  The SWTPC utility SBOX will report 

the total memory from both banks. (112K) 
 

Dynamic Address Translation 
 

You don’t really need to read this section unless you plan on writing software that 

uses the extended memory, in which case it’s good to understand how SWTPC 

mapped 1 MB of address space into a processor with only 64K of address space.  

They did this with Dynamic Address Translation, or DAT.  DAT uses 16 RAM 

locations to map a 16 bit address from the processor into a 20 bit address space. 
 

The top four address lines (A12 to A15) are used as address select lines to 16 bytes 

of memory.  The lower 4 bits of each address map to A12 through A15.  The upper 4 

bits are A16 to A19. 
 

The top page of memory (FF00 to FFFF) is always mapped to the top 256 bytes of 

the EPROM.  When SBUG starts, it loads up the DAT registers to map 56K of memory 

from 0000 to DFFF.  
 

Addresses FFF0 to FFFF are the write-only DAT registers. If you read those locations 

you’ll get the contents of EPROM, not the DAT registers.  Each register maps one 4K 

block of memory: 

 

Address Block Default value 

FFF0 0xxx 0F 

FFF1 1xxx 0E 

FFF2 2xxx 0D 

FFF3 3xxx 0C 

FFF4 4xxx 0B 

FFF5 5xxx 0A 

FFF6 6xxx 09 

FFF7 7xxx 08 

FFF8 8xxx 07 

FFF9 9xxx 06 

FFFA Axxx 05 

FFFB Bxxx 04 

FFFC Cxxx 03 

FFFD Dxxx 02 

FFFE Exxx 01 

FFFF F000 00 



 - 6 - 

That’s as clear as mud, right?  Okay, the value written into the registers is the 

inverse of the value for the lower 4 bits, and the true value for the upper 4 bits.  Still 

not clear, I know, so let’s take an example: 

 

FFF0 0xxx 0F 

 

The value 00001111 (binary) is written into the register.  When the upper four bits 

of the address (A12 to A15) are 0000, the entry above is used.  The inverse of the 

lower four bits of DAT register at FFF0 is 0000 (since it has 00001111).  So the 

values for A12 to A15 put onto the bus will be 0000.  
 

So how do we use that?  Well, let’s assume you want to load and use two programs 

that are both start at address 0000 hex.  You can select bank 0’s memory by writing 

0F to FFF0 and load the first program. 

 

Now there are multiple ways to put another block of memory at address 0xxx.  You 

can map another block from bank zero, such as moving the memory currently at 

8000 down to 0000 by writing 07 hex to FFF0.  The inverse of 7 (0111) is 8 (1000), 

so now when any address with 0000 as the top four bits is selected, the top four bits 

put onto the address bus will be 1000. 

 

Another way is to use bank 1 so that all of bank 0’s memory remains in place.  To do 

this, put the value 0001 in the top 4 bits by writing 1F to FFF0.  Now bank 1 will be 

selected for all 0xxx addresses.  

 

Load up your second program to 0000 and you’re set!  To select the initial program 

again, write 0F to FFF0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 7 - 

Summary of Jumpers and Switches 
There are a number of jumpers and switches on the board that change the behavior.  

While many of them are discussed in other sections of the manual, here is a 

summary: 

 

 

Label Use 

JP1 External RESET button connection.  Short these 

two pins together to force a reset. 

JP2 Chooses the pin connected to SS-50C bus line 46.  

It can be set to either VAR to select the baud rate 

from JP6, or BUSRQ to put the BUSRQ signal 

onto the bus. 

JP3 Allows user to disable bank 0 and 1 of RAM and 

disable EPROM at E800-EFFF and F000-F7FF 

JP6 VAR – This jumper block should have no more 

than one jumper installed to select the desired 

baud rate for the VAR line.  Available baud rates 

are 150, 2400, 4800, 9600, 19200, 38400.  The 

actual speed of these lines  is 16 times faster. 

JP7-JP8 EPROM Selection  

JP9 External NMI button connection.  Short these 

two pins together to force a non maskable 

interrupt (NMI). 

JP10 Selects the signal present on SS-50C pin 50.  Can 

be the 300 baud (x16) clock or A16. 

JP11 Selects the signal present on SS-50C pin 49.  Can 

be the 600 baud (x16) clock or A17. 

JP12 Selects the signal present on SS-50C pin 48.  Can 

be the 1200 baud (x16) clock or A18. 

JP13 Selects the signal present on SS-50C pin 47.  Can 

be the output from the JP VAR jumper block or 

A19. 

Initial Terminal Settings 
 

SBUG for the SWTPC is set for 8N1.  SBUG for the Corsham Shield will be changed to 

8N1 at a later date. 

 

8N2.  Eight data bits, no parity and two stop bits. 

 
 



 - 8 - 

SBUG/EEPROM 
 

The contents of the EPROM with any given board might change over time. The 

current source code can be found  on this web page: 

https://peripheraltech.com/Corsham-6809.htm 

TINY BASIC 
 

Tiny BASIC is not currently supplied for the reproduction board.  However you may 

build a copy from the source code if you wish and program your own EPROM. 
 

If your EPROM has a label that has “TINY BASIC” on it, then there are two commands 

for doing a cold start and warm start to BASIC: 
 

 ! = Cold start BASIC.  Do this first. 

 @ = Warm start BASIC. 
 

Do a cold start first, then you’ll be able to write simple programs using a Tiny BASIC 

dialect.  The BASIC was slightly reworked to make it fit into the bottom 2K of the 4K 

EPROM on the board.  It has one new command (“!”) which exits back to SBUG.  You 

can re-enter BASIC with the “@” command, which keeps all variables and your 

BASIC programs intact. 

SD UTILS 
 

More recently, we’ve been installing our low-level drivers for the SD Card System 

into the EPROM, along with adding a “B” (Boot) command in SBUG.  The B command 

will load the first sector from drive 0 into memory at C100, then jump to it.  We 

provide a version of 6809 FLEX that can be run directly from the B command. 

¡Viva Fiesta! 
 

All of our circuit boards have something unusual on them, and since SWTPC was in 

San Antonio, it seemed the city would make for some interesting additions.  

Fortunately, I have a friend who is a native of San Antonio, so I asked her for some 

ideas or else I’d resort to Googling for something appropriate.  She said that ¡Viva 

Fiesta! is a big festival held in San Antonio each year, so that seemed like a good 

choice.  I was also excited about this board, so the exclamation points fit into my 

enthusiasm for this project. 
 

Revision History 
 

Version Changes 

4 Basis for REV5 

5 Enhanced Reproduction of V4 

 

 



 - 9 - 

Parts List 

 
Part Number Description 

PCB 1 Printed Circuit Board  

J1 5 Molex 09-52-3101 

JP1, JP9 2 1x2 jumper block 

JP2, JP10-13 

J7,J8 

7 1x3 jumper block 

JP6 1 2x6 jumper block 

S1 1 4 pin SPST pushbutton 

C1 1 100uf, 16v electrolytic capacitor 

C2-C6,C8-C13 

C19,C22-C24 

15 .1 uf disc capacitor 

C7, C14 1 22pf 

C15, C17 2 .47uf tantalum 

C16, C18 2 .01uf 

C21 1 100pf 

R1, R6, R7 3 1M ¼ watt 

R3, R5 2 1K 

R2,R8-10 

R13,R15,R16 

7 10K 

R11 1 220 

R12 1 470 

R14 1 6.8K 

QG1 1 2.4576 Oscillator (Full size or half) 

X2 1 8 MHZ crystal 

LED1 1 3mm LED (usually red, but does not matter) 

VR1 1 7805 +5 VDC regulator, TO-220 case 

IC1 1 MC68B09 CPU 

IC2, IC3, IC4 3 74LS244  

IC5, IC11 2 74LS240 

IC6 1 628128 128K SRAM 

IC7 1 27C64, 27128 or 27256 EPROM 

IC8 1 F22V10C-15PU 

IC9 1 74LS640 

IC12 1 74LS157 

IC13 1 LM556 

IC14 1 74LS30 

IC15 1 74LS02 

IC16 1 CD74HCT4040 

IC17 1 74LS00 

IC18, IC19 2 74LS189 

IC21 1 74LS74 

 5 14 pin IC socket 

 4 16 pin IC socket  



 - 10 -

 6 20 pin IC socket  

 1 28 pin IC sockets for IC7 

 1 32 pin IC socket for IC6 

 1 40 pin socket for IC1 

 

  



 - 11 -

PAL Equations 
Name     Corsham 6809 ; 

PartNo   IC8 ; 

Date     03/24/24 ; 

Revision 0 ; 

Designer Frederic C Brown ; 

Company  Peripheral Technology ; 

Assembly None ; 

Location  ; 

Device   p22v10 ; 

 

/* *************** INPUT PINS *********************/ 

PIN   1  = BA11                      ; /*                                 */  

PIN   2  = BA12                      ; /*                                 */  

PIN   3  = BA13                      ; /*                                 */  

PIN   4  = BA14                      ; /*                                 */  

PIN   5  = BA15                      ; /*                                 */  

PIN   6  = S0                        ; /*  A16                            */  

PIN   7  = S1                        ; /*  A17                            */  

PIN   8  = S2                        ; /*  A18                            */  

PIN   9  = S3                        ; /*  A19                            */  

PIN  10  = E                         ; /*                                 */  

PIN  11  = TPAGE                     ; 

PIN  12  = GND                       ; /*                                 */  

PIN  13  = NC0                       ; /*                                 */ 

PIN  17 =  NC1                       ; 

PIN  18 =  NC2                       ;  

PIN  19 =  NC3                       ; 

PIN  20  = RAM0                      ; /* 0 - DISABLE RAM 0000-FFFF       */ 

PIN  21  = RAM1                      ; /* 0 - DISABLE RAM 10000-1FFFF     */ 

PIN  22  = ROME8                     ; /* 0 - DISABLE EPROM E800-EFFF     */ 

PIN  23  = ROMF0                     ; /* 0 - DISABLE EPROM F000-F7FF     */ 

PIN  24  = VCC                       ; /*                                 */  
 

/* *************** OUTPUT PINS *********************/ 

 

PIN  16  = ONBRD                   ; /*  RAM OR EPROM ACCESS-ACTIVE 0     */  

PIN  14  = RAM                     ; /*  RAM SELECT-ACTIVE LOW            */  

PIN  15  = CSROM                   ; /*  EPROM SELECT - ACTIVE 0          */ 
 

        /* BUS S0-S3 IS INVERTED ON INTERNAL S0-S3 BOARD SIGNALS */   

!RAM =  (  S3 &  S2 &  S1 &  S0 & !BA15 &                 RAM0 & !E ) /*Enable 0000-7FFF*/ 

      # (  S3 &  S2 &  S1 &  S0 &  BA15 & !BA14 &         RAM0 & !E ) /*Enable 8000-BFFF*/ 

      # (  S3 &  S2 &  S1 &  S0 &  BA15 &  BA14 & !BA13 & RAM0 & !E ) /*Enable C000-DFFF*/ 

 

      # (  S3 &  S2 &  S1 & !S0 & !BA15 &                 RAM1 & !E ) /*Enable 10000-17FFF*/ 

      # (  S3 &  S2 &  S1 & !S0 &  BA15 & !BA14 &         RAM1 & !E ) /*Enable 18000-1BFFF*/ 

      # (  S3 &  S2 &  S1 & !S0 &  BA15 &  BA14 & !BA13 & RAM1 & !E ) /*Enable 1C000-1DFFF*/ 

  ; 

 

!CSROM = ( BA15 & BA14 & BA13 &  BA12 &  BA11 & !E )                /* Enable F800-FFFF */ 

       # ( BA15 & BA14 & BA13 &  BA12 & !BA11 & !E & ROMF0 )        /* Enable F000-FFFF */ 

       # ( BA15 & BA14 & BA13 & !BA12 &  BA11 & !E & ROME8 )        /* Enable E800-EFFF */ 

       # (!TPAGE & !E) ;                                           

      

 

!ONBRD = ( !CSROM # !RAM ) ;                         /* Active low on EPROM or RAM access */ 

 

 

  



 - 12 -

 

S3 JP1  JP9 6809 CPU Board REV 5 
Enhanced Reproduction 

LE D1 

0.1uF 

RESET NMI 
0.1uF C19 74S189 

74LS157N 74S189 

22pf 
+ 

+ 
C14 

RESET 
22pf 

C7 

JP3 MC68B09P 

A13 A14 

JP8 JP7 

22V10 74LS74N 

2764 1 1 
27128 00-1F 0 1 
27128 20-3F 1 1 
27256 00-1F 0 0 
27256 20-3F 1 0 
27256 40-5F 0 1 
27256 60-7F 1 1 

0.1uF 

C13 

IC14 

74LS02N 74LS240N 74LS244N 74LS244N 

2.4576MHZ 
C24 IC6 

JP8 JP7 

QG1 74LS244N 74LS00N 

IC16 
IC7 1 1 

0.1uF 

4040N C2 
0 0 

C3 
IC9 * 

0.1uF 

JP6 C10 

IC11 

VAR 

JP2 
100uF 16V 

iViva Fiesta! 

50 
C1 1 

J1 

  

2
8

C
6

4
 

 

6
2

8
1

2
8

 

2
2
0
p
F

 

C
2
0
 

0
.4

7
u
F

 

C
1
5
 

C
1
6
 

  
 

A
1

6
 

A
1

7
 

3
0
0
 

3
8
4
0
0
 

1
9
2
0
0
 

9
6
0
0
 

4
8
0
0
 

2
4
0
0
 

1
5
0
 

.0
1
u
F

 
J
P

1
0
 

6
0
0
 

5
5
6
 

IC
1
3
 

J
P

1
1
 

A
1

8
 

1
2
0
0
 

J
P

1
2
 

0
.0

1
u
F
 

0
.4

7
u
F

 
1 

V
A

R
 

V
A

R
 

A
1

9
 

J
P

1
3
 

C
1
8
 

C
1
7
 

0
.1

u
F

 

IC
8

 
7
4
L
S

2
4
0
N

 

B
U

S
R

Q
 

N
M

I 
S

H
U

N
T

=
D

IS
A

B
L

E
 

E
P

R
O

M
 F

0
0

0
-F

7
F

F
 

E
P

R
O

M
 E

8
0

0
-E

F
F

F
 

R
A

M
 1

0
0

0
0

-1
F

F
F

F
 

R
A

M
 0

0
0

0
-F

F
F

F
 

0
.1

u
F

 
0

.1
u
F

 

C
4
 

C
2
3
 

IC
1
5
 

IC
4
 

0
.1

u
F

 
C

5
 

IC
2
1
 

0
.1

u
F

 

C
8
 

IC
5
 

0
.1

u
F

 

IC
1
7
 

8
 M

H
Z
 

X
2
 

IC
1

 

0
.1

u
F

 
0

.1
u
F

 

C
6
 

C
2
2
 

IC
1
2
 

IC
3
 

C
2
1
 

1
0
0

 p
f 

C
1
1
 

0
.1

u
F

 

C
9
 

0
.1

u
F

 
IC

1
8
 

IC
2
 

C
1
2
 

IC
1
9
 

7
4
L
S

3
0
N

 
S

N
7
4
L
S

6
4
0
N

 



 - 13 -
 



 - 14 -



 - 15 -
 



 - 16 -
 



 - 17 -
 


