

PROGRAMMA
INTERNATIONAL, Inc.
3400Wilshire Boulevard
Los Angeles, CA 90010

(213) 384-0579

S P L / M C O M P I L E R

•
JUNE 1979

REFERENCE MANUAL
VER 1,2

COPYRIGHT (c) 1979 BV THOMAS W. CROSLEY & PROGRAMMA INTL., INC.
ALL RIGHTS RESERVED, Reproduction in part or form of the contents of
this document or its accompanying cassette tape or disk, except for the
personal use of the original purchaser, is strictly forbidden without the
expressed written consent and permission of PROGRAMMA International, Inc.

•

COPYRIGHT (c) 1979 BY THOMAS W, CROSLEY & PROGRAMMA INTL,, INC,

JUNE 1979 EDITION
This edition (6800.002) is a major revision and obsoletes all
previous editions and documents.

Technical changes are marked with a bar in the outer margin.
Changes due to subsequent releases will be documented in the
future publication bulletins or revisions.

Requests for copies of PROGRAMMA publications should be
made to your PROGRAMMA representative or to the PROGRAMMA
central office.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may
be addressed to:

PROGRAMMA International, Inc.
Publications Department
P.0. Box 70279
Los Angeles, CA 90070

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

TABLE OF CONTENTS

PAGE i OF
CATALOGUE NUMBER

DATE DOCUMENTED

I. INTRODUCTION 1

II. PRIMITIVES ••• 2
Identifiers •••••••••••••..•••••••••••.•••••••• 2

III. DATA REPRESENTATIONS...·.··········.··...-·........
Constants .•.••••..•••••••.•••••••..•••.•••.••• 3
Variables •••••••••••••••••••••••••••••..••.••• 4

IV. FXPRF.SSIONS ;\ND ASSIGNMENT STA.TEhENTS •••••••••••••• 5
Operator Precedence •••••••••••••••••••••••.••• 6
Assignment Statements 7
Implicit Tyre Conversions •••••••••.•.••••••••• 8

V. DECLARATIONS ••••••••••••••••••••••••••••••••••••••• 9
Variable Declarations..-·----··---·-··--··-·-....}
Constant Data Declarations ••••••••••••••••••• 10
Symtolic Constant Declarations ••••••••••••••• 17

VI. FLOW OF CONTROL & GROUPING •••••••••••••••••••••••• 12
IF Statement 12
DO-FVp rours...-.-----·····-··---··---·-·....l$
DO-HILF Statement Cl 1 3

VII. PUOCFDUR:S ...•...................... ~ 15
CAII Statement. 15
RETURN Statement •............................. 17

VIII. FISCELLA/FOUS FACILITIES..-·-·-..............-....12
Direct Eeferences to Memory••••••••••.••••••• 13
Fxr1ici t Tyre Conversions •••••••••.•.•.•••••• 19
CE]VF?TE Statement..··---·---··.···.--··-....19

IX. PROGRAM CGAMIZAIIO ARD SCOPT...--·-···.·...-....21
Block Structure and Score •••••••••••••••••.••21
Procram Origins..-.--..--------------------..22

X. COMPILE PND CONFIGURATIOL OPTIONS ••••••••••••••••• 24
Syste~ Considerations •.•••....••..•...••.•.•• 24
Comriler Disk .,, 24
Rumnin the Comriler..················.·-....&4
Include Files 26
Printer Consideraticns .•.••••.•••••••••••••••27
emery [/Sae,·····-··-··················-·--·..

XI. ERROR FIA}!DLII:C ..•..................................• 2S

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

PAGE ii OF
CATALOGUE NUMBER

DATE DOCUMENTED

XII • A.PPENDICFS
A. SPL/M Compiler Interface Routines ••••••••A.1
B. SPL/M 00S Library Routines ••••••••••••••• B.1
C. 11Size" Program (SPL/M Source) C. 1
D. SPL/M Reserved Words D.1
F. Grammar for SPL/N...--·--···-------·---..E.l

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

I. INTRODUCTION

PAGE 1 OF
CATALOGUE NUMBER

DATE DOCUMENTED

SPL/M (Small Programming Languace for Microprocessors) is
based on the language PL/M, initially develo_red by the Intel
Cor1oration.

SPL/M is a 1lock-structured language which features
arhitrary lenfth identifiers and structured programming
constructs. It is suitable for systems rrogra.mming on small
commuters, since the compiler requires only 20K of memory to run.
Either two cassette decks or a disk are also required.

The language can be compiled in only one pass, which means
that the source code has to be read only once.

Unlike most high-level language translators available for
microprocessors, SPL/M is a true compiler: it generates absolute
6800 object code which requires no run-time interpreter. Due to
extensive intra-statement optimization, the generated code is
almost as efficient as the equivalent assembly language.

The compiler has a number
a printout that contains
Syntactical error messages use
exactly where an error occurs.

This manual has been cranized to be usable as both a
tutorial and a reference guide. In addition to the many examples
in the text, a complete SPL/M program is presented in Ar.pendix C.

As an example of the type of a[plication SPL/M is suited
for, this entire manual was formatted vsin a text processing
system written in 800 lines of PL/#.

of compile-time options, including
the interlisted object code.

position indicators to indicate

Some details of the compiler implementation are
the raper SPL/M - A Cassette-Eased Compiler",
Crosley, in the Conference Proceedings, Second
Computer Faire, March, 177,

presented in
by 'Thomas •
West Coast

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

II. PRIMITIVES

PAGE 2 OF
CATALOGUE NUMBER

DATE DOCUMENTED

An SPL/M program consists of primitives (reserved words,
identifiers, and constants), along with special characters
(operators).

One or more blanks (spaces) are required between any two
primitives on the same line, to tell them apart. Blanks are
allowed anywhere else, except in the middle of a primitive or a
two character operator (such as >=). A carriage return is
treated the same as a blank; therefore statements can spill cver
onto as .many lines as necessary.

Comments may be embedded in an SPL/I program anywhere a
blank is legal. Comments are delimited by a / .../ pair:

/ COMMENTS MAY G OVER
MORE THAN ONE Lnrn */

Identifiers

An identifier is a programmer assigned name for a variable,
procedure, or symbolic constant. Identifier names may be up to
1 characters long.

The first character must be alphabetic (A-Z), while the
remaining characters ray be either alphanumeric (A-Z, 0-9) or the
separation character (). The latter is comrletely ignored by
the compiler: an identifier with imbedded $'s is equivalent to
the same identifier with the $'s omitted.

Examples of valid identifiers:

ACIANO ACIA$NO (same variable)
BUFFER1
A$RATHER$LONG$PROCEDURE$NAME

Identifier names must not conflict with the reserved words
of SPL/M, such as DECLARE, PROCEDURE, etc. A complete _list of
reserved words for both Versions 1 and 2 of SPL/ is provided in
Appendix D.

-

,_

All
Variables
statement
statement

identifers must be declared before they are referenced.
and symbolic constants are defined via the DECLARE

(Section V); procedures are defined via the PhOCEDURE
(Section VII).

SYSTEM NAME

PROGRAM NAME

Constants

SYSTEM NUMBER

PROGRAM NUMBER

III. DATA REPRESENTATIONS

PAGE 3 OF
CATALOGUE NUMBER

DATE DOCUMENTED

Constants can be either a number or a character string. As
their name implies, their value remains constant during program
execution.

A numeric constant, or number, is a string of digits
representing an unsigned integer in the range 0-65535. A number
is assumed to be decimal unless it is terminated by the letter H,
indicating hexadecimal. The first character of a hexadecimal
constant must always be numeric (a leading zero is always
sufficient).

Examples of numeric constants:

0
10

OAH

32
20H

65535
OFFFFH

A character constant, or string, consists of one or more
ASCII characters enclosed in apostrophes. A null string (i.e.
;,) is not permitted. Imbedded apostrophes are represented by
two consecutive apostrophes (e.g. DON''T).

Constants of
numeric constant
character(s). In
character is placed

one or two characters are equivalent to the
representing the ASCII code fer the
a two character ccnstant, the left-most

in the most significant byte.

Character constants of more than two characters may only
appear in a DATA declaration (Section V).

Examples of character constants:

A = 41H,. ., = 2OH
'12 = 3132H
a a a er = 27H (one ')

'THIS IS A LOG STRING'

SYSTEM NAME

PROGRAM NAME

variables

SYSTEM NUMSER

PROGRAM NUMBER

PAGE 4 OF
CATALOGUE NUMBER

DATE DOCUMENTED

Variables are merory locations set aside by the programmer
to hold data that changes di_;_rinr~ tr:e execution of a prcgran:.
Variables can be declared as either type BYTE (8 bit data) er
tyre ADLRES.'.:.. (1 G bit data). BYTE varialles should be used
wherever possible to avoid he overhead associated with aouble
rrecisicn arithmetic on the 6JCC.

V),
Variables are defined usinc the DECLALl

e.g.

DECLAEE CT BYTE;
DECLARE EU!FT AI DIE;

statement (Secticn

-
Vectors (one dimensional arrays) can also Le declared, e.i__.

DFCLAfiP LIST (10) BYTE;

which sets aside 10 bytes of storage.
elerents, referenced as

V (0) , V (1) , ••• , n- 1)

A vector has n

The value in -pa.ren theses is the sul)script, which can LL any
SFL/~ expression (Section iV). The sucscrirt is added to the
base adciress for BYTE vectors to eenerate the correct ruemory
reference. For AEDRE vriales, twice the subscript is added
to the case to enerate the correct aemcry reference.

For example, if the BYTE vectcr LIST declared abov was
located at memory address 4CO, then LIST (4) would refer to n1emory
address 404. Fcwever if LIST wus an ADERES vector, then LJST()
would n;fer to memory addresses 40G and 409.

-
Sucscripted variables

allcwed in SPL/M, except as
(Section IV).

can
the

be used
or,erand

an.ywhere a variaile is
cf the dot opE:rator

The first element of a vector may also be referenced withoct
the subscript; i.e. V and V(O) are the same.

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE 5 OF

CATAl.OGUE NUMBER

DATE DOCUMENTED

IV. EXPRESSIONS AND ASSIGNMENT STATEMENTS- -
An expression is simply a way of computing a

Expressions are formed by combining operators (such as +
with either operands (variables or constants) or
expressions enclosed in parentheses.

An arithmetic expression consists of one or more operands
which are combined using the following arithmetic operators:

value.
or *)
other

+

I
MOD
•

addition
subtraction (unary minus also allowed)
unsigned multiplication
unsigned integer division
modulo (remainder from a division)
dot operator (see below)

Examples:

X
ALPHA -- BETA
10 MOD 3
-1
X (Y+Z)/2
• EUF1

(result =1)

The unary dot operator (.) generates a numeric constant
equal to the memory address of a variable. The variable cannot
have a subscript.

A relational
expressions combined
operators:

expression
with one

consists of two
of the following

arithmetic
relational

< less than
(<= less than or equal to
-= equal to
<> not equal to

>= greater than or equal to
> greater than

Comparisons are always performed assuming the operands are
unsigned integers. If the specified relation holds, a value of
OIRT (rue) is returned; otherwise the result is O (false).

SYSTEM NAME

PROGRAM NAME

Examples:

A > 1
CNTR <=== LIMIT+OVER
LOOP>O

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE 6 OF
CATALOGUE NUMBER

DATE DOCUMENTED

A logical expression consists of either arithmetic or
relational expressions combined with one or more of the following
logical operators:

OR
XOR
AND
NOT

bitwise OR
bitwise exclusive OR
bitwise AND
1's complement (unaryoperator)

t

Examples:

LADIES AND GENTLEME
NOT FLAGS (same as FLAGS XOR -1)
X > 1 OR Y < 2

The following table summarizes the effect of each logical
operator:

X y

0 0
0 1
1 0
1 1

XOR Y

0
1
1
1

X XOR Y-----·-
0
1
1
0

X ANDY

0
0
0
1

NOT X

1
1
0
0

Logical expressions are used in assignment statements to
perform bit manipulation, and in IF and LO-WHILE statements
(Section VI) to specify a series of conditional tests.

Operator Precedence

The order of evaluation of operators in an expression is
primarily determined by operator precedence.

Operands are associated with the adjacent operator of
highest precedence. Operands adjacent tc two operators of equal
precedence may be associated with either one. Operators with the
highest precedence are evaluated first. Two operators of the
same precedence may be evaluated in either order.

SYSTEM NAME

PROGRAM NAME

SSTEM NUMBER

PROGRAM NUMBER

PAGE 7 OF

CATALOGUE NUMBER

DATE DOCUMENTED

The following list summarizes the operator precedence for
SPL/M:

highest:

lowest:

()
unary -
* I MOD
+ -= < > > <== >=
NOT
AND
OR XOR

Since parentheses have the highest precedence, they can be
used to override the implicit order of evaluation. The following
fully parenthesized expression

IF (A=3) OR (B > (1O+(I+1))) THEN

can also be written:

IF A=3 OR B>AO(I+1) THEN

The parentheses around the I+1, to force the addition to be
done first, are the only ones required in this case.

Assignment Statements

Assignment statements perform the real work of a proeram.
They are used to assign the result of an expression to a variable
location. The format is:

variable= expression;

The value of the variable on the left-hand side of the equal
sign is replaced by the value of the expression on the right-hand
side.

Examples:

CTR = CTR + 1;
LIST(I) = O;

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

PAGE 8 OF
CATALOGUE NUMBER

DATE DOCUMENTED

Implicit Type Conversions

Mixed mode is a situation which arises when BYTE and ALDRE.SS
variables or constant are combined in the same expression or
assignment statement. To avoid generating unexpected results,
SPL/M attempts to use double-precision arithmetic throughout
mixed mode expressions.

As soon as an ADDRESS variable or constant is encountered
(scanning from left to right), then the remainder of the
statement or expression is evaluated in double-precision mode.
For example, if Xis an ADDRESS variable, then

X ::::: -1;

will set X = OFFFFH since the unary subtraction will ce
carried out in double precision.

When operating in double-precision mode, the high-order
eight bits of any BYTE variables or constants in an expression
are assumed to be O. In an assignment statement, if the variable
on the left-hand side is type BYTE, whereas the expression on the
right-hand side is type ADDRESS, then the high-order eight bits
of the expression will be lost.

In a complex relational expression involving ADDHEE:S
variables on one side and BYTE variables on the other, the
ADDRESS variables should appear first to force the entire
expression to be evaluated in double-precision.

Note: the rules used by SPL/M for evaluating mixeo-mode
expressions are not the same as PL/M.

Functions for performing explicit type conversions are also
available in SPL/M; see Section VIII.

-

t

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

V. DECLARATIONS

PAGE 9 OF
CATALOGUE NUMBER

DATE DOCUMENTED

Variables, constant data arrays, and symbolic constants are
defined using the DECLARE statement. (DCL is an allowed
abbreviation for DECLARE). All programmer-defined identifiers
must be declared before they are referenced in the program.
Declarations are subject to "scope", which is explained under
program organization (Section IX).

Variable Declarations

The general form of the declare statement is:

DECLARE identifier [(bounds)] type;

where "(bounds)" is optional and is used
declarations (see below). The "type" may
denoting &-bit data, or ADDRESS (abbreviated
16-bi t data.

only for vector
be either BYTE,
ADDR), denoting

Examples:

DECLARE CTR BYTE;
DCL .BUF$PI'R ADDRESS;

Vectors (one-dimensional arrays) are defined by specifying
the number of elements following the variable name; e.g.

DCL LIST (10) BYTE;

which sets aside 10 bytes of storage, and

DCL A$LIST (10) ADDR;

which allocates 20 bytes (two for each address element). Vectors
are referenced using subscripts as explained in Section III.

The number of elements
in which case no storage is
the same memory location
example,

in a vector declaration may be zero,
reserved. ·The variable will refer to
as the next data declaration. For

DCL BIC$CTR (O) ADDR,
HIGH$CTR BYTE,
LOW$CTR BYTE;

SYSTEM NAM£

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

PAGE 10 OF
CATALOGUE NUMBER

DATE DOCUMENTED

HIGH$CTR and LOW$CTR overlay the high and low bytes of
BIG$CTR. This example also shows how several variables can be
declared in the same statement. Each declaration is separated by
a comma.

Sometimes it is desirable to declare a variable at a
particular memory location. This is done by preceding the
DECLARE statement with an origin, which will cause the next BYTE
or ADDRESS variable to be allocated at the given address.
Origins consist of a number followed by :. For example,

38H: DCL ACIASNO ADDR, NOSPRNT BYTE;
3CH: DCL HUF$BEG ADDR;

DCL BUF$END ADDR;

will cause the following allocations to take place:

....

3€H-39I
3A11
3CI-3DH
3FH-3FH

ACIANO
NOPRNT
BUFBEC
BUFEND

If a declaration is not preceded by an origin, variables are
allocated storage immediately following the last declaration.
Unless overridden by an explicit origin, the first variable
declaration starts at 10H. Declare origins have no effect on DCL
DATA and DCI LIT statements (discussed below); however an origin
on either will affect the next variable allocation.

Constant Data Declarations

It is often necessary to define constant
character strings or a table. This is done via a
statement, which has the general form:

DECLARE identifier DATA (constant list) ,

data, such as
DECLARE DATA

where "constant list" is a list of numeric or character
constants, separated by commas.

It is assumed that data declared in this way will not change
during execution of the program. The data is located within the
program object code.

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE 11 OF
CATALOGUE NUMBER

DATE DOCUMENTED

The identifier defined in a DCL DATA statement is always of
type byte, and is referenced using subscripts the same as any
vector.

Examples:

DECLARE REVERSE$DJGITS DATA (9,8,7,6,5,4,3,2,1,0);

DCL MSG DATA ('A MESSAGE STRING',4)3

Symbolic Constant Declaration

The DECLARE LITERALLY statement provides a compile-time
symbolic constant substitution mechanism similar to the "equate"
facility in assemblers. The general form is:

DECLARE identifier LITERALLY 'number';

LITERALLY may be abbreviated as LIT. Whenever the
identifier is encountered in the program, it will be replaced by
the number.

Examples:

DECLARE CASS1 LITERALLY "'OF050H"';
DCL TRUE LIT 'OFFH', FALSE LIT '0';

•
•

IF DECK <> CASS1 THEN
DEFAULT = FALSE;

SYSTEM NAME

PROGRAM NAME

SSTEM NUMBER

PROGRAM NUMBER

VI. FLOW OF CONTROL & GROUPING

PAGE 12 OF
CATALOGUE NUMBER

DATE DOCUMENTED

Various SPL/M statement types are used to alter the path of
program execution. SPL/N does not have the GOTO statement
available in BASIC and FORTRAN. Eowever the structured
programming constructs (IF--THEN-ELSE, DO-END, and DO-WHILE) can
be used to express any program more clearly than if GOTO's were
used.

IF Statement

The IF statement selects alternate execution paths, based on
a conditional test. IF statements have two forms:

a) IF expression THEN statement-1;

b) IF expression
THEN statement-1;
ELSE s ta tement--2;

Execution of an IF statement begins by evaluating the
expression following the IF. If the right-most (least
significant) bit of the result is a 1, then statement-1 is
executed. If the bit is a 0, no action is taken for the first
form (a), and statement-2 is executed for the second form (b).

Since the result of a relational expression is either CFFH
(true) or O (false), the construction "IF relational-expr TEEN"
has the expected result.

In the second form of the IF statement above (b),
statement---1 may not be an IF statement. This avoids any
ambiguity in the following construction:

IF expression
THEN IF expression

THEN statement-1;
ELSE statement--2;

»

The rule in this case
(innermost) I} statement.
below) can be used to
statement:

is that the ELSE belongs to the second
If needed, a DO-END group (defined
associate the ELSE with the first IF

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE 13 OF
CATALOGUE NUMBER

DATE DOCUMENTED

'

IF expression
THEN DO;

IF expression THEN statement-1;
END;
ELSE statement--2;

The ELSE now clearly belongs to the first IF. The following
are examples of IF statements:

IF CFLAC THEN CTR = CTR+1;

IF A> 0 AND B > O
THEN A=B;

IF XO THEN Y=1; ELSE Y2;

DO-END Groups

The DO-END statement is used to group together a sequence of ­
SPL/M statements, such that they are treated as a single
executable statement in the flow of control. For example,

IF SWITCH
THEN DO;

TEMP=A;
A=B;
B=:TEMP;

END;

All three statements in the DO-END group will be executed if
the variable SWITCH is true. Note that indentation is usually
used with IF and DO statements to make the logic of the program
stand out.

Simple IXJ-END groups
create a block in which
described in Section IX.

DO-WHILE Statement

are also used (less frequeLtly) to
local variables are declared, as

The DO-WHILE statement causes a group of statements to be
repeatedly executed as long as a condition is satisfied. The
general form is:

SYSTEM NAME

PROGRAM NAME

DO WHILE expression;
statement-1 ;

•
•

SYSTEM NUMBER

PROGRAM NUMBER

PAGE 14 OF
CATALOGUE NUMBER

DATE DOCUMENTED

statement-n;
END;

The statements within the DO-WHILE are executed as long as
the result of the expression has its right-most bit equal to 1.
The expression is evaluated at the beginning of each execution
cycle.

This version of SPL/M does not have the PL/M iterative-type
DO (like the FOR statement in BASIC). Fowever the more general
DO-WHILE can be used in an identical manner:

I = O;
DO WHILE I <10;

CHAR = I+'0';
CALL PUTCER; / DISPLAY 0-9 /
I = I+1;

END·'
It is sometimes desirable to terminate the execution of a

DO-WHILE abnormally (i.e. for some condition other than the
expression following the DO). This is facilitated by the BREAK
statement, which causes a transfer of control to the first
statement following the END which terminates the innermost
DO-WHILE.

Example:

I = O; FOUND = G;

DO WHILE NOT FOUND;
IF LIST(I) = KEY

THEN FOUND = 1;
ELSE DO;

I= I+1;
IF I >= 100 THEN

END;
END;

If the key is found in the list, the DO-WHILE will exit
normally with FOUND=1 and I equal to the list index. Otherwise
the BREAK will terminate abnormally with FOUNI=O.

Note: the BREAK statement is an SPL/M extension and is not
in PL/M.

BREAK; / ABNORMAL EXIT /

/ SEARCH LIST FOR KEY*/
/ EXIT NEXT CYCLE /

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

VII. PROCEDURES

PAGE 15 OF
CATALOGUE NUMBER

DATE DOCUMENTED

Well designed programs make frequent use of subroutines,
each of which is related to a particular function. In SPL/M,
subroutines are called procedures, and are defined as follows:

label: PROCEDURE;
statement-1;

..
•

statement--n;
END;

The "label" is the procedure name, which is required later
when the procedure is called. PROCEDURE may be abbreviated
PROC.

In this version of SPL/, all procedures must be defined at
the beginning of the program (see Section IX) and nesting of
procedure definitions is not allowed.

Since a procedure is a block (also discussed in Section IX),
all variables declared within it are "local" and cannot be
referenced outside of the procedure. All storage declared in
SPL/M is static. Automatic stacking of local variables is not
done on entry to a procedure.

t
All values passed to and from procedures must be done via

global variables since procedures cannot have parameters in this
version of SPI/M.

CALL Statement

Procedures are invoked by the CALL statement:

CALL procedure-name;

where the procedure must have been previously defined as
described above.

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

PAGE 16 OF
CATALOGUE NUMBER

DATE DOCUMENTED

Example:

DCL MAX$LINE LITERALLY '80';
DCL LINE (MAX$LINE) BYTE; / GLOBAL /

•

CLEAR$LINE: PROCEDURE;
DCL I BYTE; / LOCAL /
I0­'DO WHILE I <MAX$LINE;

LINE(I) = ' ',
I = I+1;

END;
END;

..

CALL CLEAR$LINE;

It is also possible to call a procedure by its address.
This makes it easier to link to assembly language subroutines in
an operating system. For example,

CALL OFC37H;
CALL OFC3DH;

/* HOME CURSOR*/
/ CLEAR SCREEN

Note: the construction "CALL number" is an SPL/N extension,,.
and is not in PL/M.

The "declare literally" facility (Section V) can be used to
define the address as a symbolic constant to keep the reference
symbolic:

DCL HOME LIT '0C37H';

•
CAIL HOME;

SYSTEM NAME

PROGRAM NAME

RETURN Statement

SYSTEM NUMBER

PROGRAM NUMBER

PAGE 17 0F
CATALOGUE NUMBER

DATE DOCUMENTED

When a procedure is called, it starts execution at the
beginning of the procedure and normally does not return until the
END matching the PROCEDURF statement is reached. However it is
possible to force an earlier return by using the RETURN
statement, e.g.

IF ERROR THEN RETURN;

Whether a RETURN statement is used or not, a procedure
returns to the statement following the original CALL.

Ne. .N. , d. . l, a

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

VIII. MISCELLANEOUS FACILITIES

PAGE 18 OF
CATALOGUE NUMBER

DATE DOCUMENTED

Direct References to Memory

It is sometimes desirable to refer to the memory address
space of the 600 directly. (In fact this is the only way I/0
can be performed directly in SPL/M, since the language does not
have explicit input/output statements. But I/0 is usually done
via calls on existing operating systems routines.)

When required, direct reference to memory can
the MEM and MEMA vectors, which are predeclared
address O. MEM is type byte, while MEMA is type
normal doubling of subscripts is not done for MEMA;

MEMA(38H) = 0FO5OH;

be done using
to start at
address. The
for example

sets memory locations 38H and 39H tO the hexadecimal value
OFO5OH.

Note: MEM and MEMA are SPL/M extensions and are not in
PL/M.

When used on the left-hand side of an assignment statement,
MFM is like the POKE function in some BASIC's. On the right-hand
siide, MEM is like the PEEK function.

The subscript can be any arithmetic expression, but usually
is just an address variable. In the following byte IOVe
subroutine, global variables BUF1 and BUE2 contain the start
addresses of two buffers, and BSIZE is the number of bytes to
move:

BYTE$MOVE: FROC;
DO WHILE BSIZE <> 0;

MEM(BUF2) = MEM(BUF1);
BUF1 = BUH1+1; BUF? = BUF2+1;
BSIZE = ESIZE--1;

END;
END;

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE 19 0F
CATALOGUE NUMBER

DATE DOCUMENTED

Explicit Type Conversion

Section V discussed implicit (automatic) type conversions in
mixed mode expressions. SPL/E also provides two explicit type
conversions in the form of built-in functions, which take address
expressions as arguments. The functions may appear anywhere an
expression is legal.

returns the
argument.

HIGH(expr) returns the most-significant
argument.

byte of its

least-significant byte of itsLOW(expr)

GENERATE Statement

It is occasionally necessary to link to operating system
subroutines which pass values in registers. The GENERATE
statement can be used to produce machine code "patches" to
accomplish this. It generates code in-line wherever it appears
in an SPL/M program. Because of the low-level nature of this
statement, and the possibility of making errors, it should be
used only where absolutely necessary.

The GENERATE statement has the form:

GENERATE (constant list);

where "constant list" is a list of numeric, character, or
symbolic constants, including address (dot) references. GENERATE
may be abbreviated GEN.

Note: the GFJIERATE statement is an SPL/M extension and is
not in PL/M.

The following example stores the contents of the accumulator
at Location 42Hi after calling a subroutine to 1nput a character:

CALL OFCAAH;
GEN(97H, 42H);

However using only hexadecimal constants
nearly impossible to read. This can le improved
LIT's and declaring a variable at address 42H:

makes the code
by using DCL

PAGE 20 OF
SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED­
42H: DCL CHAR BYTE;
DCL GEI'$CHAR LIT 'OFCAAH',

STM LIT '97H';
•
•.

CALL GET$CHAR;
GEN (STAA, .CHAR);

For additional examples, refer to the PL/N library routines
presented in Appendix B.

a

he

PAGE 21 Of

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

IX. PROGRAM ORGANIZATION AND SCOPE
......._

In general, an SPL/M program consists of a set of global
declarations, followed by any procedure declarations, followed by
the "main" portion of the program. The last line of the program
must contain the characters EOF (end of file) which generates an
RTS instruction to return to the caller of the main program.

DECLARE statements may appear anywhere in SPL/M, but their
location may have different effects due to the "scoping" rules
discussed below. In all cases, all names, whether they are
variables, procedures, or symbolic constants, must be defined
before they are referenced in the program.

A

-

-

B

-

-

B,
C

-

-

•
•

,... XYZ: PROC;gg~ B ADDR, C ADDR;],

' DCL A BYTE; A
END;

END;

/ MAIN /

DCL C BYTE;

XYZ

Block Structure and Scope

The largest syntactic unit in an SPL/H program is the
outermost program block, which consists of the global
declarations, procedure definitions, and the "main" program.

Global declarations will be known, or available, to all
procedures and the main program. Each procedure may also contain
its own declarations, which are local; i.e. known only within
that procedure.

Procedures and/or the main program may also have DO-END
groups (Section VI) containing additonal declarations, which are
local to each group.

Example:

DCL A BYTE, B BYTE;/* GLOEAL*/

PAGE 22 OF
SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

Th brackets indicate the "score" of each variable.

Variables, once defined, can be redefined only within a
nested block (procedure or DO-END group), which will result in
additional static storage being allocated. The new definition is
known only within the nested block(s); when the end of the nested
block is reached the original definition is in effect again.

Variables, unless redefined, are known within the block in
which they are declared and in all blocks nested within it.

Program Oripins

Origins, which are simrly a number followed bwy ':', have
already been discussed in the context of declare statements
(Section V).

A proram origin is any origin not preceding a DFCLARE
statement. Pro~ram origins affect the generation of the next byte
of object code, including DCL DATA constants (which are located
within the rrogram object module).

In this version of SPL/J,;, program orie:ins are res tricte<l to
the following locations:

a program (defines startingofFirst statement
address).

Beginning of each procedure definition (the origin must
be placed just ahead of the procedure name).

1)

2)

3) Fist statement of "main" (allowed only if the program
contains rrocedure definitions).

In all tho cases above, origins are optional. In the
absence of any criin the first byte object code will start at
location 100H. If the main program or a Tocedure lacks on
orir-in, the 'lssociated code will follow the code in.mediately
preceding.

If provided, the initial (start) origin must be immediately
followed by a "null statement" (e.g. 0A10OE:;) to distinguish it
from a declare origin.

hen en cririr is specified, the user is responsible for
insuring that the resulting code does nct overlap code tha hs
already been generated.

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

PAGE 23 0F
CATALOGUE NUMBER

DATE DOCUMENTED

The following example summarizes the SPL/i proeram
organization. Everything in brackets [] is optional; and any
addresses are for example only. Note that declares can o
anywhere; however for clarity it is best to restrict them to the
beginning of the program, the beginning of each procedure, and
the beginning of "main".

[200H:; J
[[42H: J DCL's]

'[30OR:] XYZ: PRC;
•

/ OPT. START ADDRESS /

/ GLOBAL DECLARES /

/*OFT.PROCEDURE
DEFINITIOIS /

END:'
[400H: J

.
/ main /

•

•
-

/ OFT. ORIGIN FOR MAIN /

EOF

A jump from the beginning of the program (e.g. 200H) to the
beginning of the code for main (e.e. 400H) is automatically
generated if there are procedure definitions and if there is
either an explicit start address provided or there are any global
DCL DATA's.

Refer also to Appendix C for an examr,le of a complete S.PL/I•i
program that contains many of the elements described above.

FORM fr.1n1 .7 tarsal r+mar+a+inn @ 107 DD2r!OM#A rrIM rnur

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE 24 OF
CATALOGUE NUMBER

DATE DOCUMENTED

X. COMPILE AND CONFIGURATION OPTIONS

(FLEX Version 1.2)

System Considerations

This version of the compiler is desi£ned to run on a
6800-based system, such as the SWTPc, running under the FLEX
Operating System. In particular, it assumes the existence of:

FLEX 1.0 or 2.0 (not rniniFLEX)
20K of user RAN starting at location 0000
SWTBUC moni tor ROM or equivalent

Comy_iler Disk

The disk supplied with the compiler contains the following
files:

SPLM.CMD - SPL/M compiler
FLX102.TXT - Assembler source for compiler interfaces
SPLM.LIB - SPL/M library (general DOS interfaces)
SPLMRFAD.LIB - SPL/M library (reading sequential files)
SPLMWRIT.LIB -- SPL/N library (writing sequential files)
SIZE.TXT - SPL/M source for sample program (SIZE)

The SIZE.TXT scurce file is intended to be used as a test of
the compiler. It also brings in two of the library files using
the #INCLUDE facility discussed below.

Running the Compiler

The compiler has several compile-time options which control
the generation of listings and binary files.

The general syntax f'or the SPLM command is:

SPLl1[, <source>[, <binary> J [,+<option list> J J
The '' enclose a field defined below and are not actually

typed. The '[]' surround optional fields.

All
com; iler
from the
kind of

parameters are optional. If none are rrovided, then the
runs interactively with the source input comint directly
keyboard. This is useful for experimenting, to see what
code the compiler generates for a particular input. In

PAGE25 OF

SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

this mode a full code listing is always outrut to the terminal.
A binary object file is not produced.

The normal mode however is for a <source> file name to be
specified to be compiled. In this case the compiler reads the
named file from disk until an EOF statement is encountered in the
source. The defaults for the <source> file specification are a
.TXT extension and the working drive number.

If the optional <binary) file name is also specified, it is
used as the name of the object file written to disk. If <binary>
is not included in the command, the binary file will have the
same 'name' as the source file, but with a .BIN extension.

The option list is prefixed with a plus sign('+'), with
each option represented by a single letter. The letters may be
in any order. The following options are available:

C

A

G

B

y

E

(No binary). Do not create a binary file on disk, even if a
<binary> file name is specified.

(Yes, delete). Delete an old binary file of the same name
as the one about to be produced. If this option is not
specified, the comriler will prompt if the binary file
already exists. Respond with 'Y' to delete it.

(Display errors only). The compiler normally produces a
line-numbered source listing. If this option is selected
only error lines (if any) will be displayed.

(Display code). Output a full listing, includin£ both the
source and the interlisted object code.

(Display globals symbols). Output a symbol table containing
only globally-declared symbols (which includes all procedure
entry points).

(Display all symbols). Output a symbol table with both
loal and Local symbols. Each symbol table block will be
displayed as the block is exited.

If a binary file is being produced, it will have a transfer
address only if an initial origin (e.g. OA1OOH:;) is specified
as described in Section IX.

If the code option (C) is selected, the object code for each
statement is output as it is generated. Since this is a one--pass
comriler, occasionally lines like:

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

PAGE 26 OF
CATALOGUE NUMBER

DATE DOCUMENTED

155€: 7E 00 00

are output when the compiler knows that a forward jump is
required (for example in an IF or DO-WHILE statement) but doesn't
know the addresss yet. In such cases an additional entry is
output further down in the listing, when the address is resolved.
Parentheses are used to indicate that this entry is a "fixup" to
a previous unresolved jump:

(1550: 7E 15 90)

A symbol table is output only if one of the options A or G
is selected. The symbols are alphabetized on the first character -...
only. Along with each symbol is listed the type (BYTE, ADDR,
PROC, or LIT), and its value. Appendix C was printed with the G
option.

When the compiler has finished executing, it will display
the number of errors, followed by the highest memory address used
by the symbol table. If the compiler returns to the monitor
without displaying these last two items, a fatal error has
occurred (see Secticn XI).

Examples:

SPLM
SPLM,SIZE
SPLM,SIZE, +GY

SPLM,SIZE,O.SIZF.CMD, +E

Include Files

-- Interactive input from keyboard
- Source = SIZE.TXT, binary = SIZE.BIN
- Source = SIZE.TXT, binary = SIZE.BIN,

display globals, delete old binary
- Source = SIZE.TXT, binary = 0.SIZE.CND,

display errors only

The compiler has a built-in include processor, which allows
source library files to be brought in during a compile. The
syntax is:

#INCLUDE <source>

where the <source> file name defaults to a .TXT extension and the
working drive. The //INCLUDE must start in column 1. The include
statement is replaced by the file it includes. When the end of
the include file is reached, the compiler switches back to the
original file. Included files should not be terminated by an EOE
s'atement, and must not then:selves contain #INCLULE statements
(i.e., includes can not be nested).

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE 27 OF
CATALOGUE NUMBER

DATE DOCUMENTED

The source from an included file is normally output to the
listing in place of the #INCLUDE statement. However this can be
inhibited by the /NOLIST statement:

#NOLIST

source text

#LIST

None of the source text between the NOLIST and the /LIST
will be listed, except for any lines in error. Both statements
must start in column 1, and neither are output to the listing.

The library files
included at the beginning
the files have a #NOLIST
statement at the end, so
com1ile.

Printer Considerations

listed in Appendix B are intended
of an SPL/M program, as needed.
statement at the beginning, and a
they won't be listed during

to be
All

#LIST
every

To have the listing output to a printer, precede the SPLM
command with a P (see the P command in the FLEX User's Manual).
For example,

P,SPLM,SIZE

would cause the line-numbered source listing for SIZE.TXT (along
with any error messages) to be output to the printer.

Fach age of the listing starts with a form-feed (OCH)
character, which is followed by the top margin, title and finally
the source/object listing. The title includes the source file
name (without extension), date, and page number and is followed
by two blank lines. This title is generated in FLX102.TXT and
thus can be changed by the user if desired.

The byte at location 3A2H specifies the top margin, i.e.
the number of blank lines from the top of the rage to the title.
This number can be 0, which will cause the title to be rrinted on
the top line.

The byte at location 3A1H specifies the number of lines to
be printed on each rage before the formfeed is issued. This
count includes the top margin (see above), plus three for the
title.

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

PAGE 28 OF
CATALOGUE NUMBER

DATE DOCUMENTED

To accomodate narrow-width printers, if the byte at location
039DH = 1 the title and source/object listing is limited to 40
columns (assuming the input source is kept less than 32
characters wide).

Note: printer spooling should not be peformed during a
comyile, since the compiler reroutes SWI's back to the ROM
monitor to handle fatal errors (see Section XI). The SWI vector
is restored when the compiler returns to the DOS.

Memory Usage

The main part of the compiler uses RAM from 038OH to 5iFFH.
The symbol table starts at location 400H and can go up to 47FFI.
The highest address actually used by the symbol table is
displayed at the end of each compile.

The interface routines which link the compiler with the DOS
are assembled to reside et 40OH-AFFFH, but they can be easily
moved by changing one ORG statement in FLX1O2.TXT if more room is
needed for the symbol table.

The compiler also uses low memory up to location OEFH. The
top of the stack is set to 1.FFH on entry but is restored on
exit.

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

XI. ERROR HANDLING

(SSB/FLEX Version 1.2)

PAGE 29 0F
CATALOGUE NUMBER

DATE DOCUMENTED

When an error is detected, the source line is printed
followed by a line containing one or more single-character flags
indicating the error(s). The error codes are:

D- Duplicate declaration of the same identifier
0 - Origin error (see Section IX for rules)
P - Procedure definition error (Section VII)
S- Syntax error; statement has an illegal construction
U - Undefined identifier

The flags are positioned under
where the error was discovered.
below,

the primitive or operator
For example, in the printout

0210
33¥3%%

TBL(I) = CTR1 ++ CTR2;
u s u

TEL and CTR? are undefined, and there is a syntax error because
of the second '4'. When a syntax error is discovered, the
remainder of the statement is ignored (up to the next ;),
except that undefined identifiers will continue to be flagged.
Also, when undefined identifiers are encountered code is still
generated (assuming an address of 0) to allow patching.

The above errors are the only ones which should occur for
most users. They are all non-fatal; that is the compile is
allowed to proceed.

In addition there are a number of fatal errors which result
in the compiler aborting. They are implemented via software
interrupts, and result in the ROM monitor (e.g. STBUG) being
entered.

If the comriler quits and a register dump is displayed, then
a fatal error has occurred. The next to the last field of the
dump gives the address of the software interrupt, which should be
listed on the next [age:

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE 30 OF
CATALOGUE NUMBER

DATE DOCUMENTEO

OE73 - expression too complex (operator stack overflow)

OE7F - expression too complex (operand stack overflow)

0E89 - expression too complex (expr type stack overflow)

154B - program too complex (symbol table nesting >6A)

1B94 - input line too long (>80 characters)

2649 - program too complex (fixup jump for IF or DO-WHILE is
1oncer than 512bytes) r

2712 - bad source format (input doesn't end with ODH)

29FF - program too complex (IF chain nest >6O)

29FA - identifier too long (>31 characters)

2F83 - out of symbol table memory (as defined by location
03861)

If any of the above errors occur, return to the DOS via the
warm start address, correct the problem and recompile.

If a fatal error occurs that is not listed above, an
internal "impossible" comriler error has occurred. Please send
the error code rlus a listing of the program causine the error to
Programma Consultants, using the attached SER (Sus_r:ected Error
Report) form.

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE A.l OF
CATALOGUE NUMBER

DATE DOCUMENTED

APPENDIX A

SPL/M Compiler Interface Routines

FORM DOC-1O1 9.76 r.nrat rcumnntatinn (E) 1976 PROGRAMMA CONSULTANTS

SPL/M COMPilFR - FLfX LINKAC?S A.2

************~·**
* *
*
*
*
*
*
*
*
*
*

SPL/M CONPILFR - DJTER}ACE EOUTINES
(C) COPYRIGHT 1979 BY TOMAS W. CROSLEY

FLEX 1.0/2.0 COf>'F'ILEH VERSION 1.2

THIS COI'F CONTAn;s THE DOS-SPECIFIC ROUTINES
NECESSARY TO INTF'RFJ\CE THE SPL/I< COt,PILER
WITH A PARTICULAR OPERATING SYSTEM.

*
*
*
3$

*
*
*
*

******************************~*********************

** EQUATES FOR FLEX 00S
*0000 XFC FQU C

0001 XES EQU 1
0003 XUN FQU 7.,
0004 XRN FQU 4
oooc XEX F.QU 12
003E xsc FQU 59
0002 ,504 FQU 2
0001 QS04R T'QU 1
0004 QSCL PQU 4
oooc QDEI. EQU 12
0003 F.FE FQU z­000"1 f.'fO:F' F.QU P:
0001 TX1TXT EQU 1
0000 EINFXT EQU 0
0016 TRNBFC FQU 16
0002 EINREC EQU 2
0008 FHirFN fQU €
B406 RS FQU $ B4O6
B403 RNSCLS FQU $B4073,, .,,,
J\D2D GITTIL +CU tAD2D
AD3F PPI'f'RR FQU $AD3F
AD03 WARLS EQU $AD03
A02.0 IE FQU :4030
AC14 LINFTR EQU 1' -AC14
AD1B I:HUFF PQU MD1F
AC1'.'.J CURCHR F'QU !;AC18
AD15 ;FTCHR F.QU $AD15
AD18 PUTCFm EQU AD1€
AD12 OUTCE2 F.QU $AD12
AD27 i1XTCH FQU :fAD27
AD33 cry+YT FQU 4DR3

1.... • +

AD2A ::?STRIO PQU '!:-AD2/.,
AD24 ?CRlF FQU tAD24
AD39 OUT:CEC FQU AD
ACOF 1O;TI EQU AC0OF
ACOF DAY F'QU ACOF
AC10 YFAE :::;'QU !'AC1C

FUNCTION CCDE
ERROR STATUS
UNIT NUMBER
FILS N/IYC
EXTENSION
SPACE COM? FLAG
OPEH FOR WRITE'
OPFN FGR REJ\D
CLOSE
DELETE
FIL EXISTS
END OF .fILf
TEXT FXTFNSION
BII\ARY FXTFr-;srCl-J
TRP.NSJTF? Rf.CORI
BINARY RECORD
FILE NJ\LF LEN

INPUT LINE EUFEFR
IB POHCTER

SPL/M COMPILf'R - FLEX LINKAGFS 6-12-7S TSC P.SSFMELER PAGE A.3

E124
A012

** EQUATFS FOR SWTBUG
SFF.1 EQU $E124
SWIJMP EQU $A012
*

ON--VECTORED SI

0570
0571
0572
0573
3D80ooco
003C
003E

OOOD
0020

* EQUATES TO
INPOPI' EQU
PRTOPT EQU
OUTOPT EQU
SYMOPT EQU
SBFFND EQU
INTORG EQU
EUFADR EQU
BUFFND FQU
*CR EQU
SPACE EQU
%

INTERFACE WITH REST OF COMPILER
$570 INPUT OPTION
$571 PRINT OPTION
$572 corE GENERATION OPI'ION
$573 SYMBOL TABLE OPTION
$3D80 END OF SOURCE EUF
$CO INITIAL ORIGIN FLAG
$3C CURRENT BUF PTR
$3E END OF BUFFER PTR

$D
$20

* VFCTOR TABLE FOR COMPILER:
*0380 ORG $380
* COLD START FNTRY POIN'I'

0380 ?E 20 78 JMP $2C78
*+ GFTPARMS -- JUMP TO, USER SUB TO PARSE COMMAND LINE

0383 7E 48 00 JMP GPARKS
t

0386 47 FF

0388 00 00

* HIGH MEMORY - HIGHEST : ,FJ1 LOC USABLE EY SYMBOL TAELE'
FDB CPARNS-1

** LOADX - AI1DRESS OF USER SUB TO TRANSFER BA TO X
FDB O IF O, COMPILER WILL GENERATE

* PCRLF - JUMP TO USER P.OUTINE TO OUTPUT CRLF
038A 7F AD 24 JMP PCRLF

** PUTCHR - JUMP TO USER OUTHUT ROUTIE
038D 7F AD 18 JMP PUTCHR

¥

* CASS/DISK READ - JUMP TO USER ROUTINE TO EEAD SOURCE
0390 7F 49 7D JMP DREAD

** CASS/DISK WRITE - JUMP TO USER ROUTIIE TO WRITE 0EJECT
0393 7E 4A 65 JMP DWRITF.

*
0396 00 0O

0393 00 00

MULT - ADDRESS OF USEF. SUE TO MULTIPLY BA EY CONTETS
+ OF BYTFS O,1 - RE ULT IN EA

FDB C IF O, COMPILER VILE GENERATE
** DIV - ADDRFSS OF USER SUB TO DIVIDE Bl, BY CONTENTS 0.r
* BYTFS O, 1 - QUOTIEI\'T IH BA, RFr-,AIItDER IN O, 1

FDB O IF O, COPIIER WILL CEIERAT:
#

*

SPL/. COPIIFR - FLEX LINKACFS 6-12-79 TSC ASSEMlLER PAGE A.4

039 AO 80

039c 0O FCB 0 NOT USED

LINEUF - ADDRESS OF LINE DUFFER USED EY INBUFT
LIIJBUF FDB IB
*

NARRO - SET TO 1 IF FRITER HAS 4O COLUMNS
039D OO KAREO FCB O

*
GFTCIR - JUMP TO USER KEYBOARD CHARACTER INPUT ROUTLI

039E 7E AD 15 JMP GETCHR

0341 39

03A2 02

0343 0O FCB 0 IJOT USED

PLEN - NUJviBER OF LIE OUTPUT AFTER FORMFTED
FCB 57

*
TMAR - NUMBER OF ELANI LINES BETWEEN FORMEEED AND 'TITLE

FCB 2
*

* LINEIN - JMP TO USFR EEYEOARD LINE INPUT FOUTINE
03M4 7F AD 1 B JMP IN.BlJFF

** PTITLE - JMP TO USFR SUB TO OUTPUT TITLE P..T TOP
* OF PAGE

03A7 7F 4B 1F JMP PTITLF
* WRAPUP - JMP TO WF:APUP ROUTINE

03AA 7F 48 44 JMP CLOSE
*

4800

* OTF -- TEF FOLIOING CODE IS VECTOREI TO FRON LOCTICS
+ 320-3AC, AND CAN EF REASSEMBLED AN!YFE HY CEANGIG IE
* TP.F FOLLO\i.'ING ORIGIN:

0RG $4800
*o NOTE: NEXT 2 INSTRUCTIONS FOR STEUC OILY

4800 CF E1 24 GPARMS LDX !SFEI RETORF NORMAL SI'S
4803 FF AO 12 STX SWIJMP

4806 TF 05 70
4809 7F 05 71
480C ?F 05 72
480F 7F 05 73
4812 7F 4B F3

4815 BE AC 18
4818 81 OD
481A 26 09
481C ED AD 2A
481F BD 4B SE
4822 7F 48 F4

CLR
CLR
CLR
CLR
CLR

INPOPT
PRTOPT
OUTOPI'
SYMOPI'
DF.LOPT

CLEAR OPTIOi\T .FLAGS

** PARSE THE COMMAND LINF
LDA A CURCHR
CMP A {CR
ENE GP10
JSR RSTRIO INTERACTIVE KF'YEOATID OPTIOl\
JSR ITITLE OUTPUT TITLF
JMP CP7O

SPL/M COMPILFR - FLEX LINKAGES 6-12-79 TSC ASSEMBLER PACE A.5

*

INCLUDE NEST=O
READ FOF=FALSE
PAGE NUMBER=()

INPUT .FROM DISK
SOURCE PRINTOUT
PRODUCE BINARY

INCLP
REOF
PAGENO

CLR
CLR
CIR

*

* SFI' DEFAULTS FOR DISK INPUT
GP1O LDA A #2

STA A INPOPT
STA A PRTOPT
INC OUTOPT

* PARSE SOURCE FILE NAME
LDX 1/RFCB
JSR CETFIL
BCC GP30 BRANCH IF OK

ERROR JSR RPTERH
CLOSE JSR FMSCLS CLOSE ALL FILES

JMP WARMS

4825 Bf 02
4827 BT 05 70
492A E7 05 71
482D 7C 05 72

4830 7F 4B FE
4833 7F 4B FF
4836 7F 4C 00

4839 CE 4C 03
483C BI" AD 2D
483F 24 09
4841 ED AD 3F
844 BD B4 03
4847 7F AD 03

484-A 86 01
4840 BT AD 33
84F 86 01
481 A7 00
483 BD B O6
48.6 26 E9

* OPEN SOURCE FILE
GP30 LDA A #TXTEXT

JSR SETEXT
LDA A ffQS04R
STA A XFC,X
JSR FMS
BNE ERROR

*

DEFAULT EXT IS .TXT

%

PARSE BINARY FILE NAMF
LDX #WFCB
JSR GEI'FIL
BCS ERROR
JSR NXTCE
CMP A ff'+

* COPY SOURCE FILE NAME TO EINARY
LDX !RFCBi,
STX XTMP
LDX #WFCE
STX XTMP2
JSR COPY.FN
LDX #WFCB
CLR XEX,X CLEAR FXTENSION
CLR XEX+1,X
CLR XEX+2,X

483 CF 40 03
487B FF 4B FA
48 E CE 4D 43
4861 FF 4B F6
4864 BD 49 49
4867 CF 4D 43
486A 6F OC
486C 6F OD
486F 6F OE

4870 ED AD 27
4873 81 OD
4875 27 7D
4877 81 2B
4879 27 16

487B FF AC 14
487F 09
487F FF AC 14

4882 CE 4D 43
4885 ED AD 2D
48S8 25 ITT
488A BD AD 27
488D 81 2B

JSR NXTCH
CMP A !CRI,

BEQ GP70
CMP A -!-!'+J,

BEQ OPTLP
* LDX LINPI'R

DEX
STX LINPI'R

USF DE:FAULTS

GE'T OPrIONS

RRET FOR CETIL

SPL/M COMPJIFR - FLEX LINKACFS

428F 26 63 BE
* GET OPTIONS

4891 BE AD 27 0PTLP JSR
4894 81 OD CMP A
4896 27 50 BEQ
4898 81 42 CMP A.
489A 26 05 ENE
489C 7F 05 72 CLR
489F 20 FO BRA
4841 81 59 OPT10 CMP A
48A3 26 05 ENE
48A5 7C 4B F3 INC
48/\3 20 E7 BRA
48P.A 81 45 0Pl'20 CMP A
48AC 26 07 ENE
48AF. 86 01 LDA A
4800 ITT 05 71 OPT25 STA A
48B3 20 DC BRA
48B5 81 43 0PTO CMP A
48B7 26 04 ENE
48B9 86 03 LDA A
48BB 20 F3 BRA
48BD 21 41 OPT40 CNP A
48BF 26 07 BN
48C1 SE 02 LDA A
48C3 ITT 05 73 OPT45 STA A
48C6 20 C9 BRA
4803 31 47 OPT50 CMP ft.
48C/I. 26 04 ENE
48CC 2G 01 LDA A
48c 20 F BRA

3

48DO CY 48 D9 0PI'60 LDX
48D3 ED 4B 6C JSR
48D6 7F 4% 44 JNP
48D9 OD OA ILLOPT FDB
48DB 49 FCC
48F3 0A FCB

*
48F4 7D 05 72 GP70 TST
48F7 26 01 ENE
48F9 39 RTS

6--12--7? TSC ASSFJ.U:LER PAGE A.6

GP70 USF DEFAULTS

(+BYECAG)
NXTCE
!'CRt,

GP70 ALL DOt.::'
#'B DON'T PRODUCE EINARY
OPT10
OUTOPT
OPTLP
#'Y DELETE OLD BINPRY
OPT2C
:C-:ELOPT
OPTLP
#F PRINT E7ROES ORLY
OPT30
y1
1,

P?TOFT
OPTLP
#'C FULL PRINTOUT L.ITH CODE
OPT40
3'3I,
OPT25
fit ...A PRINT AIJ, SYi ff.:£:LS
OPT50
"2,r
SYMOPT
OPTLP
f"'G PRINT ONLY GLOIAL SYMOOLS
OPT60
11/,-
OPT45

I'ILLOPT ILLEGAL OPTION
OUTST2
CLOSF.
20D0A
'ILLFGAL OPTION S.?ECI.FIED'
4

OUTOPr
GP75

NO BINJ,.PY

48FA CE 4D 43
48FD 86 00
48FF ED AD 33
4902 86 02
4904 A7 00
4906 BD B4 06
4909 26 05
490B 86 FF
490D A7 3B

* OPFN
GP75

EINARY FILE
LDX f./WFCB
LDA P. f.-1 BHff.XT
JSR .SF.TEXT
LDA A /,'QS04W
STA A XFC,X
JSR FMS
Bl'IE GP80
LDA A f!:tFF
STA A XSC,X

DEFAULT EXT IS • BI

IO SPACE CONPRI SSICN

TO (XTNP2)

IO GO OPEN IT

USE INCL FCB AS TEI.P

DELETE DESTROYS FC.L

ABORT

GET FRf:OR
EXISTS ALREADY'?
SOME OTHER IRCR

DELETE OLD BINP:RY

6-12-79 TSC ASSEIELER PAGE A.7

ALL DONE ITH COMMA!D LINE

CPLP

XTMP2

XTMP
XTMP2
XUN,X

$0DOA
'DELFTF OLD EINARY (-N)? '
4

XES,X
f!EFE
FRRORO
DELOPT
GP90
#DELMSG
OUTST2
GEI'CHR
gy'y,,
GP90
CLOSE

BINARY FILF
-/fWFCE
XTMP
#IFCB
XTMP2
COPYFN
#IFCB
#QDFL
XFC,X
FMS
GP75
ERROP.

RTS

LDA A
CNP A
BNE
TST
ENE
LDX
JSR
JSR
CMP A
BEQ
JMP

DETM SG 5DB
FCC
FCB

* COPY FILF1\JAHE IN FCB(XTMP)
COPYFN LDA B {12
CPLP LDX XTMP

LDA A XUN,X
IX
STX
LDX

CPLP1 STA A
INX
STX
DEC E
ENE
RTS

*
+ DFLFTF OLD
GP9C LDX

STX
LDX
STX
JSR
LDX
LDA A
STA A
JSR
BEQ

FRRORO JMP
¥

3

GPBO

492B CF 4D 43
492F FF 4B F4
4931 CE 4E 83
4934 FF 4B F6
4937 ED 49 49
493A CF 41 83
493D 86 OC
493F A7 00
4941 BD B4 06
/944 27 BA
4946 7E 43 41

4949 C6 OC
94B FF 4B F4
494F A6 03
49 0 0°
491 FY 4B FA
49,4 FF 4B F6
49 7 A7 03
49 9 0€
49A FF 4B F6
49D 5
49 E 26 EB
4960 3

4961 Of' OA
4963 44
4970 04

4903 39

4910 A6 01
4912 81 03
4914 26 30
4916 7D 4B F3
4919 26 10
491B CE 49 61
491£ BD 4B 6C
4921 BD AD 15
4924 81 59
4926 27 03
4928 7E 48 44

SPL/1'-'. COMPILE:R - FLFX LINKAGF'S

497D 7t 4B FF
4980 27 05
4982 CF 4C 03
4985 20 63

+ READ SOURCF FROM DISK
DREAD TST EEOF

BEQ DREAD1
LDX f;RFCB
BRA FRRORT TRYING TO EEAD PAST EOE

*
4987 8D 29 DRFAD1 ESR
4989 7D 4B FF TST
498C 26 13 ENE

RBFD
P.EOF
EOONF

READ FI«ST EYTF OF SOURCE LIME
ENL OF FILE?
YES

SPL/ COMPIIR -- FLEX LINKACES 6-12-79 TSC ASSF.MELER PAGE A.8

4987 01 23
4990 27 5B
4992 8D OF
4994 C6 3D
4996 86 80
4993 90 3F
499A D2 3E
499€ 26 01
499E 4D
499F 22 E6
4941 39

49A2 DF 3E
49A4 A7 00
49A6 0°
49A7 DF 3E
49A9 81 OD
49AB 27 04
49AD 8D 03
49AF 20 F
49B1 39

49B2 .FF 4B F4
49B5 Cf 4C 03
49B8 ?D 4B FE
49BE 27 03
49BD CF 4E 83
49CO BD B4 06
49C3 27 1E
49C5 A.f. 01
4907 31 08
49CS 26 1F
49CB 7I'. 4E FE
49CE 27 OE
49D0 7F 4B Ff
49D3 86 04
49D5 A7 00
49D7 BD B4 06
49DA 26 OE
49DC 20 D7
4'3DE 86 01
49EO B7 4B .FE'
49E3 4D
49E4 27 DA
49E6 IT 4B F4
49Eo ,;o.' ­49EA 7TJ: 48 41

49ED 8D C3
49EF 31 49
49.F1 27 OB
49F3 DE 3E
49F5 CE 23

DRFAD2

BH
RDONE
*RDLINE
RL05

RL10

INCL

CMP A
BEQ
BSR
LDA B
LDA A
SUB A
SBC B
ENE
TST A
BHI
RTS

LDX
STA A
IX
STX
CMP A
BEQ
BSR
BRA
RTS

BSR
CMP A
BEQ
LDX
LDA B

BUFEND
o,x
EUFEND
CR
FL1o
RBFD
RLOS

FRROR

RBFD
11 'I1
INCL05
BUFEND
y· I[
i, d

ASSlnrns ONF RBFD BFFORE CAil,

DEFAULT IS RFAE FCE

SWITCH TO INCLUDE :FCB

YES, CI"CE IF I ICLJTF FILE

YES, S\'.ITCP. EACK TC- MALI

CLOSE 1CUDE ILE

IGNORE IULL CEARS

SOMETHING ELSE, RETORT

_µ, !l
/, II

INCL CHECK FOR '#INCLUDE'
RDLINF READ REAINDER OF LINE
SBFEND/256 CH!CK FOR BUER OVERFLOW
#SBFEND
EUIDJD+1
Pl.JFEND
EH

DREAD1
READ FNOUGF FOR NO

* READ EYTE FROM DISK
RBFI: STX XTP
RB.ITO LDX f;'RFCB

TST INCLP
EEQ RBFD1
LDX /;'IFCE

RBFD1 JSR FMS
BEQ ROK
LDA A XES,X
CNP A #FEOF
BNE FRROR1
TST INCLP
BEQ SFOF
CLR INCLP
LDA A f/QSCL
STA A XFC,X
JSR FMS
ENE FRROR1
BRA F.BFOO

SE5OT LDA A {1
STA A REOF

ROK TST A
BEQ RBFD1
LDX XTMP
RTS

ERROR1 JNP

SPL/N COMPILFR - FLEX LIXKACFS 6-12-79 TC ASSENELER PAGE A.9

49F7 E7 00 STAB o,x
49F9 00 IX
49FA DF 3 STX FUFEND
49FC 20 94 BRA DREAD2 REI WITH 2ND CFAR IN ACCA
49FF 7D 4B FE INCW5 TST INCLP
4A01 26 48 BNE INCE ERROR - NESTED INCIDDE
4A03 SD AD INCL10 BSR RBFD
4A05 81 OD CMP A #CR
4A07 27 42 BEQ INCE ERROR - NO FILFNAJviE
4A09 81 20 CMP A /fSPACE IGNORE TO NEXT SPACE
4AOB 26 F6 BNE INCL10
4AOD 8D A3 BSR RBFD
4AOF 81 OD CMP A //CR
4A11 27 38 BEQ INCE
4A13 FF 03 9A LDX LINBUF
4A16 FF AC 14 STX LINPI'R
4A19 A7 00 INCL20 STA A o,x COPY FILE SPEC INTO INPUT IV ..FTF a.
4A1B 08 INX
4A1C 81 OD CMP A -/!CR
4A1E 27 04 BEQ INCL3O
4A20 8D 90 BSR RBFD
4A22 20 F5 BRA INCI20
4A24 CE 4E 83 INCL30 LDX #IFCB
4A27 ED AD 2D JSR Gfil'FIL PARSE INCLUDE FILE NAME
4A24 25 14 BCS !NCO
4A2C 86 01 LDA A #TXTEXT
4A2E ED AD 33 JSR SETEXT DEFAULT EXT IS .TXT
4A31 86 01 LDA A {'0$042 OPEN INCWDE FILE
4A33 A7 00 STA A XFC,X
4A35 BD B4 06 JSR EMS
4A33 26 06 ENE INCO
4A3A 7C 4B FE INC INCLP
4A3D 71 49 27 JMP DREAD1
A4O CF 4A 54 INCO LDX INC.SG
A43 BD 4B 6C JSR OUTST2
A46 CF 4E 03 LDX 1FCBT
'A49 20 9F BRA FRROR1
'A4B CF 4A 54 INCF LDX f,!INCMSG
'A4F BD 4B 6C JSR OUTST2
4A1 7E 48 44 JMP CLOSE
4A74 OD OA INC;SG FDB 0DOA
4A.. 6 23 FCC '#INCLUDE ERROR'
4A64 04 FCB 4

** WRITE OBJECT BUFFER TO DISK
4A65 DE 3C DWRITE LDX BUFADR POINTS TO OBJ EUF
4A67 A6 00 LDA A o,x GET RECORD TYPF
4A69 26 04 BIE 03
4A6B 7F 4B FE CLR ISTRT STRT RECORI: INITIALIZATION
4A6 39 W01 RTS
4A6F 81 FF 403 CMP A /FF
4A71 26 15 BNE 10
4A73 96 CO LDA A INTORG END RECORD
4475 27 F7 BEQ O1

S P L / N COPILFR - F L E X L I N K A G E S G-12-7S TSC ASSH✓:ELER PACE A.10

4A77 36 16
4A79 Br· 4B OD
4A7C BE 4B FC
4A7F BD 4B OD
4A82 EE 4B FD
4A85 7F 4B OD

*
4A82 81 01 110
4AFA 26 F2
4A8C 02
4A8D 02
4A8F 08
4A2F FF 4B FB
4A92 DC 3E W15
4A94 96 3F
4A96 BC 4B F9
4A99 F2 4B F8
4A9C 26 5B
4A9F 81 80
4AA0 24 57
4AP2 7V 4B FB
4AA5 2f 13
4AA7 31 02
4AA9 2£ OF
4AAB F6 00
4AAD C1 7E
4AAF 26 09
4AB1 5F
4AE2 F.'1 01
4AB4 26 04
4AB6 E1 02
4AB8 27 3F
4APA F7 AB FA WBLY
4ABD 26 02
4ABF SD 4C
4AC1 DF 3C
4AC3 A6 01
4AC5 7f' 4B FB
4AC8 26 03
4ACft ITT 4B FC
4ACD 8I 3E W20
4AC A6 02
4AD1 7D 4B FB
4AD4 26 03
4AD6 B7 4B FD
4AD9 8D 32 3O
4ADB 86 01
4ADD E7 4B FB
4AEO 7C 4B FA
4AF3 BE 4-B FA
4AE6 SD 25
4AE3 FF 4B Fe
4AFB Ac 00 WLOOP
4AED 2!: 1E

LDA A
JSR
LDA A
JSR
LDA A
JMP

CMP A
ENE
INX
INX
INX
STX
LDA B
LDA A
SUB A
SBC B
DNE
CMP A
BHS
TST
ENE
CMP A
BNIE
LDA B
CMP E
ENE
CLR B
CMP B
BNE
CMP B
EFQ
STA A
I,DA A
P.SR
LDX
LDA A
TST
BILE
STA A
BSR
LDA A
TST
BNE
STA A
PSR
LDA A
STA A.
INC
LDA A
RSR
LDX
LDA A
BSR

{/'TRIRC
l'JBI'D
STRT
VBTD
STRT+1
BTD

3'1II

V:01

CODF
BUFEKD
EUFF.ND+1
CODE+1
CODE
WSEC
$80
WSEC
ISTRT
BL
2,,
BLK
o,x
#$TE
VBLK

1,X
»ELK
2,X
?TS
COUNT
{BIIRRC
BTD
BUFADR
1,X
ISTRT
V20
STRT
BTD
2,X
ISTRT
30
STRT+1
\·.'ETD
±'1
ISTRT
COUNT
COUNT
.BTD
CODE
c,x
ETD

GOTO BLOCK

TRP. NSFFP ADDR

REGULAR OEJ RECORD (MAX 512 l!Y'.i >.•

SAVE PT TO EEC OF CODE

EA HAS LENGTH - 1
IF)128 BYTES, SPLIT UP

DUMMY JUNP ONLY?
DON'T OUTPUT JUS'I' 7F 0000

BINARY BLOCK

RELENBER INITIAL STRT ADDI
WRITE STRT ADD

NORMALIZE LFCI

RI'TR LFRGT

l'!hITE c,r JT CODF

SPL/I! CONPIIPR - FLEX LIRKAGES 6-12-?S TSC ASSELELEH PAGE .A.11

** WRITE BYTE TO DISK
WBTD STX XTMP

LDX /fWFCB
JSR FMS
BN"F. FRROR2
LDX XTP
RTS

ERROR2 JMP FRROR
*

4AEF Of'
4AF0 ?P 4B FA
44F3 26 F6
4AF5 FF 4B FB
4AF 3

4AF9 86 7F
4AFB 8D BD
4AFD DF 3C
4AFF E6 01
4001 A6 02
4003 SB 80
41305 C9 00
4007 ITT 01
4B09 A7 02
4BOB 20 85

4BOD FF 4B F4
4B10 CE 4D 43
4B13 BD B4 06
4B16 26 04
4B18 FE 4B F4
4B1B 39
4B1C 7F 48 41

RTS
*
WSEC

INX
DEC
ENE
STX
RTS

LDA A
.ESR
LDX
LDA B
LDA A
ADD A
ADC E
STAB
STA A.
BRA

COUNT
L0OP
CODE

/TF
WELK
PUFADR
1,X
2,X
"305.5
!0
l

1,X
2,X
15

SAVE PTR TO NET BYTE

WRITE A SECTIOI. (123 BYTES)

ADD 128 TO START AIDR

PAI:

LENGTH OF FILF NAME
CET CHAR OF F

PTTL05

* OUTPUT TITLE AT TOP OF PAGE
PTITLF LDX /;'RFCB

LDA E {FNLFN
P'ITL05 LDA A XFN, X

ENE PTTL10
LDA A !SPACE

18 PTT11O JSR PUTCER
INX
DEC B
ENE

4B1 CF 4C 03
4B22 C6 08
4124 A6 04
4P26 26 02
4B28 86 20
4B2A BD AD
4.B2D 08
4B2F 5A
4B2F 26 F3

*
\ 4B31 CF 4B BB LDX f.TITLEO

4B34 BD 4B 5F JSR OUTSTR
4B37 B6 03 9D LDA P. MARRO
4B3A 27 08 BEQ PTTL12
4B3C CF 4B CO LDX #TITLF2
4BF BD 4B 5F JSR OUTSTH
4B42 20 06 BRA PTTL15
4B44 CF 4B C5 PTTL12 LDX /TIT1E3
4B47 BD 4B 5F JSR OUTSTR
4B4A ED 4B 82 PTTL15 JSR DATE
4B4D CF 4B EA LDX /'PAGE/, -
4BO BD 4B 5F JSR OUTSTR
4B73 70 4C 0O INC PAGENO
4B 6 B6 4C 0O LDA A PAGENO
4B59 BD 4B 78 JSR ONEDFC
4BC 7F AD 24 JMP PCRLF

*

40 CHAR PRINTOUT?
NO

OUTPUT COMPILEE VERSION

OUTPUT DAT:F

OUTPUT PAOF NUMBER

SPL/I: CONPIIR -- FLEX LINKACFS 6-12-79 TSC ASSEMLLEH PAGE A.12

4BF A6 CO
4B61 31 04
4B63 27 06
4B65 BE AD 13
4B68 08
4B69 20 F4
4B6B 39

4B6C AE 00
4B6F 81 04
4B70 27 F9
4B72 BD AD 12
4B75 08
4B76 20 F4

4B78 B7 4C 02
4B7B CF 40 01
4B7F SF
4B7F 7F AD 39

4B82 BE AC OE
4B85 BD 4B 78
4B83 86 2D
4B8A BD AD 18
4B8D B6 AC OF
4B90 DD 4B 78
4B93 86 2D
4B95 BD AD 18
4B93 B6 AC 10
4B9E 7F 4B 78

** OUTPUT DATE
DATT LDA A

JSR
LDA A
JSR
LDA A
JSR
LDA A
JSR
LDA A
JP

N'ONTH
ONEDEC
!
¥

PUTCER
DAY
ONRDEC
J1 •g,'
PUTCHR
YEAR
ONEDFC

SAME AS PSTNC EXCEPT NO INITIAL, CLF
OUTSTR LDA A O,X

CMP A #4
BEQ OSRTS
JSR PUTCER
INX
BRA OUTSTR

OSRTS RTS
** SAME AS OUTSTR EXCEPT USES OUTCH2
OUTST2 LDA A O,X

CMP A {4
BEQ OSRTS
JSR OUTCP.2
INX
BRA OUTST2

*
OUTPUT ONE BYTE IN DECIMAL

ONEDEC STA A DCT+1
LDX f!DGT
CLR B NO LEADING SPACES
JMP OUTDEC

4B9F BD AD 24
4BA.1 B6 03 9D
4BA4 26 OC
4BA6 CF 4B BB
4BA9 ED 4B 5F
4BAC CF 4B BC
4BAF Br:: 4B 5F
4BB2 CF 4B C5
4BB5 BD 4B 5F
4BB3 7E AD 24

4BBB 20
4BEC 20
4BC0 20
4BC4 04
4BC5 53
4BE9 04
4BEA 20

* TITLE FOR INTERACTIVF USE
ITITLE JSR PCRLF

LDA A NARRO!
ENE ITIL10
LDX #TITLPO
JSR OUTSTR
LDX f'TITLF1
JSR OUTSTR

I TTL 10 LDX /IT I TLE3
JSR OUTSTR
JMP PCRLF

*TITLEO FCC e #

TITLE1 FCC # ,
TITLE2 FCC

, ,
FCB 4

TITLE3 FCC 'SPL/I·l COMPILFB VFRSION 1.2
FCB 4

PAGF FCC ,
PACE

,

SPL/N COMPILFR - FFX LINKAGES 6-12-75 TSC ASSF'MELER PAGE A.13

4BF2 04 FCB 4
*4BF CO DELCPT FCB 0

4BF4 00 00 XTMP FDB 0
4BF6 00 00 XTMP2 FDB 0
4BF3 00 00 CODE FDB o·
4BFA 00 COUNT FCB 0
4BFB 00 ISTRT FCB 0
4BFC 00 00 STRT FDB 0
4BFE 00 INCLP FCB 0
4BFF 00 REOF FCB 0
4COO 00 PAGENO FCB 0
4C01 00 00 DGT FDB 0

*
4C03 RFCB RMB 320
4D43 FCB RMB 320
4E83 IFCE RMB 320

3

4FC3 PCEID QU ¥
@ END

NO ERROR(S) DFI'FCTEI

SPL/ COIPILFR - FLEX LINKAGES 6-12-79 TSC ASSEMELER PAGE A.14

SYVBOL TABLE:

BH 499F BINEXT 0000 BIUREC 0002 BUFADR C03C BUFEND 003ECLOSE 4844 CODE 4BF8 COPYFN 4949 CCUNT 4BF/l. CPLP 494BCPLP1 4957 CR 000D CURCHR AC13 DATE 4B2 DAY ACOFDELMSG 4961 DELOPT 4BF3 DGT 4C01 DREAD 497D DREAD1 4987DR'AD2 4992 DRITF 4A65 EFOF 0008 EFE 0003 ERROR 4841ERRORO 4946 ERROR1 49EA ERROR2 4B1C FMS B406 FMSCLS B403F!LEN 0008 GFI'CHR AD15 GETFIL ADD GP10 4825 GP30 434A4GP70 48.F4 GP75 48FA GP80 4910 GP9O 492E GPARMS 4300IB /!080 IFCB 4E23 ILLOPT 42D9 INBUFF AD1 E INCE 4A4BINCL 49ED I1CLO5 49FE INCL10 4fl.03 1NCI20 4A19 INCL30 4A24INCLP 4EFE IICMSC 4A54 INCO 4A40 INPOPl.' 0570 INTORC C'-OCOISTRT 4BFB ITITLF 4BSE ITIL10 4B.B2 LINEUF 039A LINFTR AC1AMO TH ACOE NARRO 03SD NXTCH AD27 ON'DEC 4B7G OPT10 43A1OPT20 48AA OPT25 48EO OPT30 48B5 OPT40 48BD OPT45 4-BC3OPT50 4308 OPT60 4810 OPTLP 42891 OSRTS 4B6B OUTCH2 AD12OUTDEC AD39 OUTOPI' 0572 OUTST2 4B6C OUTSTR 4B5F PAGE 4BEAPAGENO 4COO PCRLF AD24 PCEND 4FC3 PRTOPT 0571 PTITLE 4B1FP'ITL05 4B24 PI'TL10 4B2A PTIL12 4B44 PTTL15 4BAA PUTCHR AD18QDEL cooc QSCL 0004 QS04R 0001 QS04W 0002 RBFD 49132RBFDO 49B5 RBFD1 49CO RDLINE 49/1.2 RDONE 49A1 REOE 4BFFRFCB 4C03 RL05 49A4 RL10 49B1 ROK 49E3 RPI'FRR AD3FRSTRIO AD2A SBFND 3D8O SEOF 49DE SETEXT AD33 SFE1 E124SPACF 0020 STRT 4BFC SWIJMP A012 SYMOPT 0573 TITLED 4BBBITLF1 4BBC TITLE2 4BCO TITLE3 4BC5 TRNRFC 0016 TXTF.XT 0001\'/01 4A6E 03 4A6F 10 4AE'B W15 4A92 920 4ACDW30 4AD9 WARM.S ADO WELK 4ABA WETD 4BOD FCB 4D43WLOOP 4AEB WRTS 4AF8 WSEC 4AF9 XPS 0001 XEX ooocXFC 0000 XFN 0004 xsc 003B XTP 4BF4 XTMP2 4BF6XUN 0003 YFR AC10

t

PAGE B.10F
SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

APPENDIX B

SPL/N DOS Library Routines

FORM DOC- 101 -76 General Documentation 1976 PROGRAMMA CONSULTANTS

SPLM.LIB 6-12-79 PAGE B.2

#NOLIST
/ SPLM LIBRARY 'SLM.LIB' ­

DOS INTEHFACF RGUTINES

FLEX VERSION 1 .O 6-9-79 /

/ THESE ROUTINES CAN EE USFD BY AN
SPIN PROGRAM TO INTERFACF WITH
THE DOS. Pf,RAMITERS NORMALLY
PASSED IN RfCISTERS ARE PLACED
IN GLOBAL V/1.RIABLFS INSTEAD.

SEE THE FLEX 2.0 "ADVANCED PRO
GRAFMERS GUIDE" FOR A DFTAILED
DESCRIPI'ION OF EACH OF THE
ROUTINES.

THE VERSION NUMBER OF TEE PROGRAM
MUST BE DECLARED AS A SYMEOLIC
CONSTANT BE:FORE INCLUDING TPIS
FILE. THE .STARTING ADDRFSS AND ANY
GLOBAL VARI/i.BLE..S NOT ON PAGE O (SUCE
AS ARRAYS) SHOULD ALSO EE DECLARED
BEFORE THE LIBRARY INCLUDES, E.G. ·

OA100H:;
DCL VERSION LIT '1';

0A840H: DCL RFCB (320) EYTE;
INCLUDE SPLM.LIB
#INCWDF SPLMRFAD.LIB

VARIA.BLFS DECLARED AFI'ER THF INCLUDES
WILL BF PLACFD ON PAGE O UNLESS
PRECEDED BY AN ORIGIN. */

/* GENERATE VF.RSION NUMBER*/
6EN(/BRA 1/20C1H, VERSION);

/ OVERLAY FOR PART OF DOS MEMORY MAP "/
OAOBOH: DCL LINBUF (128) BYTE;
0AC02H: DCL FOLCHR BYTE;
OACOEH: DCL SMONTH BYTE, SDAY BYTE, SYEAR BYTE;
OAC11H: DCL LASTTF.RM BYTE; .
OAC14H: DCL LINPI'R ADDR;
OAC13H: DCL CURCHR BYTE, PREVCHR BYTE;

DCL TRUF LIT 'OFFH';
DCL FALSE LIT '0';
DCL CRLF LIT 'ODOAH';

/ SYMBOLIC CONSTANTS FOR DISK IO*/
DCL XFC LIT '0'; / FCB OVERLAY*/
DCL XES LIT '1 ';

SPLM.LIE

DCL XUN LIT '3';
DCL XFN LIT 14 1

;

DCL XEX LIT '12';
DCL XFS LIT '15';
DCL XNC LIT '59';
DCL QSRW LIT ''; / FUNCTION DEFS */
DCL QS04R LIT '1',
DCL QS04W LIT '2';
DCL QS04U LIT '3';
DCL QSCLS LIT '4';
DCL QSRE LIT '5',
DCL EFOF LIT '8'; / ERROR STATUS /
DCL DXBIN LIT '0'; / DEFAULT EXTENSIONS*/
DCL DXTXT LIT '1';
DCL DXCMD LIT '2';
DCL DXSYS LIT '4';

' DCL DXBP..K LIT '5 1
;

DCL DXOUT LIT '11',

WARMS:PROC;
GEN(/*JMP* /7EH,0A003H);

END;

10H:DCL CHAR BYTE;
/* READ ONE BYTF INTO CHAR*/
GETCHR:PROC;

CALL /*GFTCHR*/OAD15H;
0EN(/*STAA*/O97H, .CHAR);

END;
/* WRITF ONE BYTE FROM CHAR*/
PUTCHR:PROC·

GEN/LDA/096, .CEAR) ;
CALL /*PUTCPR*/OAD18H;

:SND;
/* OUTPUT A SPACF */

' SPACE:PROC;
GEN(/LDAA/086,' ');
CALL /*PUTCER*/OAD18H;

END;

DCL IN.BUFF LIT 'OAD1EH';
DCL MSGA ADDR;
/* OUTPUT STRING WHOSE ADDRESS

IS IN VJSGA */
PSTRNG:PROC·

GFN(/LDX/ODEH, .MSGA) ;
CALL /*PSTRNG*/OAD1E1f;

END;

DCL FRROR BYTE;
/* CLASSIFY CHAR; FRROR = TRUE

IF NOT ALPHANUMERIC*/
CLASS:PROC;

ERROR= OFFE;

6-12-79 PAGE B.3

SPLM.LIB

GEN(/LDAA/96H, .CHAR) ;
CALL /*CLASS*/OAD21H;
GF.N(/*BCC*/24H,1); RETURN;
ERROR= O;

END;
DCL PCRLF LIT 'OAD24H';
/* GET .NF,XT BUFFER CHARACTER

INTO CHAR*/
NXTCH:PROC;

CALL /*NXTCH*/OAD27H;
GEN(/*STAA*/97H,.CHAR);

END;
DCL RSTRIO LIT 'OAD2AH';

DCL FCBA ADDR;
/* GET TILE SPF.C INTO FCB WHOSE

ADDRFSS IS IN FCBA. NORMALLY
ONLY CALLED BY LIBRARY ROUTINF.S
RDOPFN AND WTOPEN /

GETFIL:PROC;
ERROR = OFFH;
GEN(/*LDX*/ODEH,.FCBA);
CALL /*CETFIL*/OAD2DH;
GFN(/*BCC*/24H,1); RETURN;
ERROR= O;

END;
DCL LOAD LIT 'OAD30H';
DCL DFFFXT BYTE;
/* SF'T DF.FAULT PXTENSION

CONT/IINED IN DEFEXT */
SETEXT :PROC ·

ci(/LDAA/96, .DFEFXT) ;
GEN(/*LDX*/CDEH,.FCE/1.);
CALL /TEXT/0AD3H;

FND;

DCL DGTA ADD, LDSPC BYTE;
/* OUTPUT DFCIMA!.J NUMBER WHOSE

ADDRFS IS IN DGTA. LEADING
SPACFS WILL BE PRINTFD IF
LDSPC = TRUE /

OUTDEC:PROC·
GFNl/*LDAB*/OD6r,.LDSPC);
GFN(/*LDX*/ODEH, .DGTA);
CALL /*OUTDFC*/OAD39H;

FND;
/* OUTPUT HF.X BYTE \'1HOSF

ADDRPSS IS IN DGTA */
OUTW.X:PROC·

cRN/LEX/CDFH, • DGTA) ;
CALL /*CUTHFX*/OAD3CH;

/ RFPORT DOS FIROR. NORMALLY

6-12-79 PAGE B.4

END;

SI.LIE 6-12-79 PACE B.5

ONLY CALLED FRON DISK I/0
LIBRARY ROUTINES*/

RPTERR:PROC·
ciN(/LEX/ODEH, .FCBA) ;
CAIL /*RPTERR*/OAD3FH;

END;

DCL NUM ADDR, ANYDGTS BYTE;
/ GET TEX NUBFR INTO NUM.

EhROR SET TRUF IF NOT HEX.
DGTS SEI' <> 0 IF ANY DIGITS
FOUND. */

GE'THFX:PR0C;
NUM=O; FRR0R=OFFH; ANYDCTSO;
CALL /*GFTHEX*/OAD42H;
GEN(/*BCC*/24H,1); RETURN;
ERROR=O;
GEN(/*STX* /ODFH, .NUM);
GEN(/*STAB*/0D7P.,.ANYDGTS);

END;
/* OUTPUT 2 HEX BYTFS WEOSE

ADDRFSS IS IH DC'.I'A */
0UTADR:PR0C·

cFN(/LDX/ODEH, • DGTA) ;
CALL /*0UTAI'R*/0AD45H;

END;
/* INPUT DECIMAL NUMBER INTO NUM.

ERROF. SIT IF INVP.LID NUMBER.
DGTS SET<> 0 IF ANY DIGITS
FOUND. /

INDEC:PROC;
NUM=O; FRROR=OFFH; ANYDGTSO;
CALL /*INDEC*/OAD48H;
GEN(/*BCC*/24H,1); RETURN;
FRR0RO;
CEN(/*STX*/ODFH, • NUH) ;
GEN(/*STAB*/0D7H, .. ANYDGTS);

END;

DOCMND:PROC;
CAIJ, /*I:OCMlID*/OAD4EH;
GEN(/*STABi"/OD7H,.ERROR);

FND;
FMS:.PROC;

/* SET ERROR = OFFH WITHOUT
DPSTROYING CEAR IN ACCA */

ERROR= O; ERROR= FRROR-1;
GEN(/*LDX*/ODEH,.FCBA);
CALL /FMS/0PAC6H;
GEN(/*BFQ*/27H,1); RFTURN;
ERROR = 0; . /* ACC/i. STILL HAS CHAR /

END;
DCL FMSCIS LIT '0BAO3H';
#LIST

SPLMRFAP.LIE

//NOLIST
/* SPLf LIBRARY 'SPLMREAD.LIB' -

READ ROUTINES

FLEX VERSION 1. 0 6-9-79 */
/* THFBE ROUTINES CAN EE USED BY AN

SPLr•'. PROGRM1i TO READ A SEQUFJ-JTIAL
FILF. A TILE CONTROL BLOCK NAMED
RFCB' MUST BE DF.CLARF.D BEFORE
THF. LIBRARY INCIUDE, E.G.:

OA840H: DCL RFCB (320) BYTE;
#INClliDE SPLM .LIB
INCLUDE SPLMRED.LIB /

/* RDCLOSE - CLOSE A FILE PREVIOUSLY
OPNFD FOR READING /

RDCLOSE:PROC·
RFC(XRC) = QSCLS;
FCBA = • RFCB;
CALL FMS;
IF ERROR THFN DO;

CALL RPIERR;
CALI WARMS;

END;

/* RDFE - HMfDL!T FATAL READ FRRORS /

RDER:PROC;
FCBA = .RFCE;
CALL RPTFRR;
CALL RDCLOSF;
CALI WARMS;

END;

/ RDOFFN - OPF A FILF FOR READING.
ON FNTRY, (GLOBAL) DEFEXT MUST
CONTAIN THE DEFAULT EXTENSION
TYPF - SEE 'SPLr-:.LIE' FOR
SYMBOLIC CONSTAFTS TO USF'.
SPACE COMPRFSSION IS ALAYS
INHIBITFD BY DEFAULT*/

RDOPF.N:PROC;
FCBA = .. RFCB;
CALL GETTIL;
IF FRROR THFN DO;

CALL RPTFRR;
CAIL WARMS;

FND;

6-12-79

-\

PAGE B.6

(

SPLMFMP.LIE 6-12-7':?

RFCE(XFC) = QS04R;
CALL STEXT; / DEFFXT MUST BE S~ UP */
CALI ENS;
IF E'RROR THFN DO;

CALL RPTERR;
CALL WARMS;
ND;

/* INHIDIT SPACF COI,!P */
RFCB(XNC) = TRUF;

-PIJD;

RBFT - FAD ONE BYTF FRO DISK
INTO (GLOBAL) CHAR.
ON FXIT, DEOF = TRUE IF "'ND OF
FILF, EISF REOF = FALSE /

DCL RFOF BYTE;
RBFD:PROC;

REOF = TRUE;
RFCB(XFC) = QSR\<.';
FCBA = .RFCB;
CALI, ES;
GEH(/*STl\A* /97H,. CHAR);
IF ERROR THF.N DO;

IF RFCB(XES) = FEOF TEEI(RETURN;
ELSE CALL RD,r;',R;

END;
RFOF = FALSF;

/ RBFDF - 7AT ON BYT? FROM FISK
INTO (GLOBAL) CAR. ENE OF
ILF HMNDIT AS FATAL ERROR */

RBFD:-':PROC;
CA.LL RBFD;
IF REOF TIE CALL RDER;

FND;
!1LIST,,

/*

SPLEWRIT.LIB

;3/NOLIST
/ SPIN LIBRAY 'SPLWRIT.II'­

VRITF ROUTINES

FLEX VFRSION 1.0 6-9-7? */
/* THESE ROUTD!ES CAN IE USFD BY AN

SPLM PROGRAV TO WRITF A SEQUENTIAL
FILF. A FILE CONTROL BLOCK NAMED
'FCE' MUST BE DECLARED BfFORE
THE LIBEARY INCLUDES, E.G.:

1 OOP: DCL RE'CB (320) BYTF,
DCL CB (320) BYTE;

ICLUDF SPI.LIB
#,1INCLUDF SPU:RFPD.LIB
INCIUDF SPIRIT.LIB

/ TC10SE - CLOS A FILE PRFVIOUSLY
OPPKED FOR l'IRITING */

HTCLOSE:PROC·
WFCB(XFC) = QSCLS;
FCBP. = .WFCE;
CALL FMS;
IF FRROR THFN DO;

CALI RPTERR;
CALL WARES;

END;

/* WTEP - fANDLP FP-.TAL READ FTIF.ORS */
WTER:PROC;

FCBA = .FCE;
CALI RPTPR;
CALL WTCLOSF;
CALI WARNS;

F1D;

/* WTOPFN - OPFN A FILE FOR \.:RITING.
ON FNTRY, CLOB/\L) DF.FEXT MUST
CONTAIN THE DEFlULT FXTfNSION
TYPF - SEF 'SPLI-'. LIE' FOR
SYf'.'.POLIC CONST/1.NTS TO USF.
SPACF. COMPRFSSICN IS ALh'AYS
INHIBITED BY DEFAULT * /

WTOP'SN:PROC;
FCBA = .WFCE;
CALI OFTIL;
IF FROR THFN DO;

CA.LL RPrERR;

6-12-7S· PAGE B.8

-

-

*/

SPLMWRIT.LIB 6-12-79 PAGE B.9

CALL WARMS;
FND;
WFCB(XFC) = QS04W;
CALL SETEXT; /* DEFF.XT MUST BE SE: UP /
CALI FMS;
IF FRROR THEN DO;

CALL RPTERR;
CALL WARMS;
FND;

/* INHIBIT SPACF COMP /
FCE(XNC) = TRUE;

END;

/* WBTD - WRITF ONE BYTE FROM (GLOBAL)
CHAR TO DISK • */

. WBTD:PROC;
WFCB(XFC)::::: QSRW;
FCBA = • WFCB;
GEN(/+LIAN/96H, .CHAR) ;
CALL FMS;
IF ERROR THEN CALL WTER;

END;
#LIST

PAGE C.10F
SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

APPENDIX C

Size" Proe;ram (SPL/M Source)-- -

FORM DOC. 11 .76

SIZE SPL/M COMPILER VERSION 1.2 6-12-79 PAGE C.2

0001
0002
0003
0004
0005
0006
0007
0008
0009
0710
0011
0012
0013
0014
0015
0016
0322
023
032
0325
0326
0327
0328
0329
0330
0331
0332
0333
033¢
0335
0336
0337
0338
0339
0340
0341
0342
0 43
034°
0345
0346
0347
0348
0349
0350
0351
0352
035%
0351

0355
0356
0357

/* SIZE - DISPLAYS SECTOR COUNT, */
/* LENGTH IN DECIMAL AND HEX, * /
/* NUMBER OF LINES (CR'S), PLUS */
/* CHFCKSUM Al'ill CREATION DATE OF */
/* A FILE. */
/* */
/* FLEX VERSION 1.0 /
/* 6-11-79 */

0f..100H:;
DCL VFRSION LIT '1';

OP.840H:DCL RFCB (320) BYTE;

/* /IINCIDf!E SPLM .LIB - LIEI:ARIES INCLUDED HERE
#INCLUDE SPLMREAD.LIB */

DATE:PROC; /* OUTFUT DATE AS MM-DD-YY */
DCL MONTH LIT '25', DAY LIT '26', YEAR LIT '27';
DCL DGT ADDR;
LDSPC = FAISE·
IF RFCB(MONTH~ < 10 THFN CALL SPACE;
DCTA = .DGT;
DCT = RFCB(MONTH); CALL OUTDEC;
CHAR = '- ' · CALL PUTCHR;
DOT = RCB(DAY}; CALL OUTDEC;
CHAR == '-' • CALL PUTCHR;
DOT = RFCB(YER); CALL oUTDEC;
IF RFCB(DAY) < 10 THEN CALL SPACE;
CALL SPACE;

END;

ASIZF:PROC; / OUTPUT SIZE AND CHECKSUh INFO FOR A FILE
DCL BYTE$CTR ADDR, LINF$CTR ADDR, CHKSUE EYTE;
DCL TBYTE$CTR ADDR, FLAG l:'YTE;
DCL XSIZ LIT '21'; /* LOG OF SECTOR SIZE IN FCB */
DCL CR LIT 'ODH';

BYTESCTR = O; LINFSCTR = 0; FLAG= FALSE; CHKSUM = O;
CJ. LL RBFD;
00 WHILE NOT REOF;

I± FLAG AJD (CHAR <2 O) THEIN ±LAG = FALSE;
IF NOT FLAG AND (CHAR = 0) THEN DO;

FLAG= TRUE;
/* MARK LAST NON-ZERO BYTE */
TBYTE$CTR = BYTE$CTR;

END;
CHISUM = CHISUM + CHAR;
BYTE$CTR = BYTE$CTR + 1;
IF CHAR = CR THEN LINE$CTR = LINE$CTR + 1;
Ct.LL RBFD;

END;

-

-

SIZE SP/M COMPILER VERSION 1.2 6-12-79 PAGE 0.3

035€ IF FLC T!FM / STEIG 0F NULLS AT END /
0359 BYTE$CTR = TBYT28CTR;
0360
0361 LLSPC = TRUE;
0362 DCTA = .RFCB+XSIZ; CALL OUTDEC; /* Sf.CTOR SIZE*/
0 63 Ct.IL SPACE;
036
0365
0366
0367
0368
036€
0370
0371
0372
0373
0371

0375 EID;
0376
0377 / MAIN /
0378 DCL HEADER DATA (' DATT NS DEC TEX LINES CS',
0379 CRLF,CRLF,4);
0380
0381 DFFEXT = IXTXT ;
0382 CALL RDOPEN;
0383
038' MSGA = .HFADF.R; CA.LL PSTRNG;
0385 CALL DATE;
0386 CALL ASIZF;
0387
0388 C/ILL RDCLOSE;
0389 CAIL €ARMS;
0390

0391 LVL 00

001 C AJIIYDGTS BYTE
A2A8 ASIZE PROC
AC18 CURCHR BYTF
DOA CRLF LIT
0010 CEAR EYTF
A 12 -. CLASS PROC
0000 DXEIN LIT
0001 DXTXT LIT
0002 DXCXD LIT
0004 DXSYS LIT
0005 DXBAX LIT
OOOB DXOUT LIT
0016 DFFEXT BYTE
0017 DGTA ADDR
A19E OOCMNf PRCC
A253 DJ\.TE PROC

DGTA = .BYTE$CTR; CALL OUTDEC; / BYTE CCUNT /
C/ILL SPACF; CALL SPACF.;

CP LL OUTAI:R ; /* IN HF.JC */
Cf.LL SPACE;

DCTA = .LINESCTR; CALL OUTDEC; /* Lll\F COUNT */
CALL SPACF; Ct.LL SPACF;

DCTA = .CHKSUVi; CALL OUTHFX; / CAIECSUN /

SIZE

fl.CO2
0008
0013
0000
0014
A1A4
B403
A 1 OA
A138
A164
A366
AD1F
A184
A080
AC 11
AC14
AD30
0019
0011
A132
001A
A150
A158
A17F
AC19
A 110
A 11C
AD24
0000
O1
0002
0003
0004
0005
A840
AD2P..
A15E
A1B6
A1D'
A1E1
001D
A216
A244
ACOE
ACOF
AC10
A116
A148
OOFF
0001
A106
noco

SPL/M COMPILER VERSIOI 1.%

EOLCHE BYTE
F.FOF LIT
ERROR JJYTf
FA.LSP LIT
FCBA ADDR
FNS PROC
Ff.:SCLS LIT
GITCHR PROC
GITFIL PR0C
GETHEX PR0C
HFADER BYTE
IN:PUFF ITT
INDEC PROC
LINBUF BYTF
1/i.STTERN EYTE
LINPTR ADDR
LOAD IIT
LESPC BYTF
MSGA P.DDR
NXTCH PROC
NUM ADDR
OUTDEC PROC
OUTHEX PROC
OUTADR PRCC
PREVCHR BYTE
PUTCHR PR0C
PSTRNC PR0C
PCRLF LIT
QSRW LIT
c€04R LIT
.€04 LIT
QS04U LIT
QSCIS LIT
QSREl'l LIT
RFCB BYTF
RSTRIO LIT
RPTERR PR0C
RDCLOSF PROC
RDER PR0C
RDOPSI PRCC
RFOF EYTE
REFD FROC
REFDE PROC
SONTH BYTE
SDAY EYTE
SYEAR BYT
SPACE PROC
SFTFXT PRCC
TRUE LIT
VERSION LIT
WP.HMS PROC
XFC LIT

6-12-7S PAGE C.+

-

SIZE SPL/M COMPILER VERSION 1.2 6-12-79 PAGE C.5

0001 XFS LIT
0003 UN LIT
0004 XF.N LIT
000C XFX LIT
OOOF . XFS LIT
003B XNC LIT

0391 EOF

**** NO ERRORS·

HIGH ADDR USED: 44D6

SYSTEM NAME

PROGRAM NAME

rep#A r/_ n we

SYSTEM NUMBER'

PROGRAM NUMBER

APPENDIX E

Grammar For SPL/H

PAGE E.l OF
CATALOGUE NUMBER

DATE DOCUMENTED

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER

PROGRAM NUMBER

Grammar for SPL/L V1 • 1

PAGE E,2 OF
CATALOGUE NUMBER

DATE DOCUMENTED

<program>::= <init> <main> EOF

<init> ::= <istmt list> : <origin>; <istmt list>

<istmt list>::= <istmt> : <istmt list> <istmt> J NIL

<istmt> ::= <decl stmt>; : <proc def'> ; : <gen stmt>;

<origin> ::= <number>:

<proc def> ::= <proc head> <stmt list> END

<proc head) ::= <identifier>: PROCEDURE ;
<identifier>: PROC;

: <origin> <proc head>

<main ::= stmt list> ' <origin> <stmt list>

<stmt list> ::= <stmt> ' <smt list> <stmt> : NIL

<stmt> ::= <ba.sic stmt> : <if stmt>

<casic stmt> ::= <assignment> ;
, <group> ;
: <call stmt> ,
: RETURN;
: BREAK ;

<decl stmt> ;
<gen stmt> ;

<if stmt> ::= <if clause> <stmt>
: <if clause> <basic strut) El.SE <stmt>

<if clause> ::= IF <expr> THEN

<group> ::= <group head> <stmt list> END

<group head> ::= DO ;
: DO WHILE <expr>;

<call stmt> ::= CALL <identifier> : CP.Ll.i <number>

-

._

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

APPENDIX D

SPL/M Reserved \•iords

PAGE D.l OF

CATALOGUE NUMBER

DATE DOCUMENTED

PAGE D.20F
SYSTEM NAME SVSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

SPL/M Reserved Words

ADDR LIT
ADDRESS LITERALLY
AND LO
BASED MEM
BREAK MEMA ** BY ** MINUS
EYTE MOD
CALL HONITCR
DATA NOT
DCL OR
DECLARE + PLUS
DO PROC
ELSE PROCEDURE
END RETURN
EOF THEN
GEN TO
GENERATE WHILE
HIGH XOR
IF

* - Reserved word in Version 1 only
ts

** - Reserved word in future versions;
illegal in Version 1

)

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGEE.3 0F
CATALOGUE NUMBER

DATE DOCUMENTED

<decl stmt> ::= DECLARE <decl element>
: DCL <decl element>
: <decl stmt>, <decl element>
: <origin> <decl stmt>

::= <identifier> <type>
: <identifier> (<number>) <type>
: <identifier> DATA <data list>
: <identifier> LITERALLY '<number>'
< <identifier> LIT '<number>

<decl element>

<type> ::= BYTE t ADDRESS l ADDR

<data list> ::= <data head) <constant>)

<data head) ::= (: <data head) <constant>,

<gen stmt> ::= GENERATE <data list>
: GEN <data list>

<assignment)::= <variable)= <expr>

<expr> ::= <logical factor>
: <expr> OR <logical factor>
: <expr> XOR <logical factor>

<logical factor> ::= <logical secondary>
: <logical factor> AND <logical secondary>

<logical secondary>::= <logical primary)
: NOT <logical primary>

<logical primary ::== <arith expr>
<arith expr> <relation> <arith expr>

<relation> ::== } <{> { <> { <= ' >=
<arith expr> ::= term>

{ <arith expr> + <term>
: <arith expr> - <term>

<term> ::= <secondary>
: <term>* <secondary>
l <term>/ <secondary>
, <term> MOD <secondary>

SYSTEM NAME

PROGRAM NAME

SYSTEM NUMBER'

PROGRAM NUMBER

PAGE E.+ OF
CATALOGUE NUMBER

DATE DOCUMENTED

<secondary ::= <primary>
: - <primary>

<primary> ::= <constant>
<variable>

{ (<expr>)
: HIGH (<expr>)
: LOW (<expr>)

<variable> ::= <identifier>
: <identi.fier> (<expr>)
: MEM (<expr>)

MEMA (<expr>)

<constant>::= <number> ; '<string>' : .<identifer>

<identifier>::= <letter>
<identifier> <dee digit>

: <identifier> <letter>
' <identifier> $

<letter>

<number>

. ·­. -- A : E : C ••• : Z

<dee number> : <hex number> E

<dee number>::= <dee digit>
: <dee num> <dee digit>
: (dee num> $

<hex number> ::= <dec digit>
, <hex num> <hex digit>
: <hex nwn> $

<dee digit> 0 I 1 I 2 I Q
I I • • • I :;;

<hex digit> :: <deo digit> } A ' E} C !D ' E } I

<string>::= <str element> : <string> <str element)

<str element>::= <ASCII char> : ,,

