
OS-9 Technical Manual i

OS-9®

Technical Manual

Copyright and Revision History Copyright and Revision History

ii OS-9 Technical Manual

COPYRIGHT AND REVISION HISTORY

Copyright 1994  Microware Systems Corporation. All Rights Reserved. Reproduction of this document, in part or
whole, by any means, electrical, mechanical, magnetic, optical, chemical, manual, or otherwise is prohibited, without
written permission from Microware Systems Corporation.

Source Code Version: OS-9 Version 2.4
Revision: K
Publication Date: May 1994
Product Number: OST68NA68MO

DISCLAIMER

The information contained herein is believed to be accurate as of the date of publication. However, Microware will
not be liable for any damages, including indirect or consequential, from use of the OS-9 operating system, Microware-
provided software or reliance on the accuracy of this documentation. The information contained herein is subject to
change without notice.

REPRODUCTION NOTICE

The software described in this document is intended to be used on a single computer system. Microware expressly
prohibits any reproduction of the software on tape, disk or any other medium except for backup purposes. Distribution
of this software, in part or whole, to any other party or on any other system may constitute copyright infringements
and misappropriation of trade secrets and confidential processes which are the property of Microware and/or other par-
ties. Unauthorized distribution of software may cause damages far in excess of the value of the copies involved.

For additional copies of this software and/or documentation, or if you have questions concerning the above notice, the
documentation and/or software, please contact your OS-9 supplier.

TRADEMARKS

OS-9 and OS-9000 are registered trademarks of Microware Systems Corporation.
All other product names referenced herein are either trademarks or registered trademarks of their respective owners.

1900 N.W. 114th Street, Des Moines, Iowa 50325-7077 Phone: (515)-223-8000

Table of Contents Table of Contents

OS-9 Technical Manual iii

Introduction

OS-9 Technical Overview

System Overview
System Modularity .. 1-1
I/O Overview ... 1-4
Memory Modules... 1-7

Basic Module Structure ... 1-8
The CRC Value.. 1-8
ROMed Memory Modules... 1-9
Module Header Definitions ... 1-9
Additional Header Fields for Individual Modules ... 1-13

The Kernel
Responsibilities of the Kernel.. 2-1
System Call Overview 2-2

User-state and System-state ... 2-2
Installing System-state Routines.. 2-3

Kernel System Call Processing.. 2-4
System Function Calls ... 2-4
I/O Calls ... 2-5

Table
Of

Contents

Table of Contents Table of Contents

iv OS-9 Technical Manual

Memory Management ... 2-6
OS-9 Memory Map.. 2-7
System Memory Allocation ... 2-8

Operating System Object Code.. 2-8
System Global Memory ... 2-8
System Dynamic Memory ... 2-8
Free Memory Pool ... 2-9

Memory Fragmentation ... 2-10
Colored Memory.. 2-11

Colored Memory Definition List ... 2-11
Colored Memory in Homogeneous Memory Systems 2-14
System Performance .. 2-14
Re-configuring Memory Areas .. 2-14

System Initialization ... 2-15
Init: the Configuration Module ... 2-15
Sysgo ... 2-21
Customization Modules ... 2-22

Process Creation .. 2-23
Process Memory Areas .. 2-25
Process States... 2-25

Process Scheduling .. 2-27
Pre-emptive Task-switching .. 2-27

Exception and Interrupt Processing ... 2-29
Reset Vectors: vectors 0,1 .. 2-31
Error Exceptions: vectors 2-8, 10-24, 48-63... 2-31
The Trace Exception: vector 9.. 2-31
AutoVectored Interrupts: vectors 25-31, 57-63 (68070 only) 2-32
User Traps: vectors 32-47... 2-32
Vectored Interrupts: vectors 64-255 ... 2-32

OS-9 Input/Output System
The OS-9 Unified Input/Output System .. 3-1
The Kernel and I/O .. 3-3

Device Descriptor Modules ... 3-4
Path Descriptors ... 3-7

File Managers ... 3-9
File Manager Organization .. 3-10
File Manager I/O Responsibilities ... 3-11

Device Driver Modules.. 3-14

Table of Contents Table of Contents

OS-9 Technical Manual v

Basic Functional Requirements of Drivers .. 3-14
Driver Module Format ... 3-15
Interrupts and DMA... 3-16

Table of Contents Table of Contents

vi OS-9 Technical Manual

Interprocess Communications
Signals ... 4-2
Alarms ... 4-4

User-state Alarms .. 4-4
Cyclic Alarms .. 4-4
Time of Day Alarms .. 4-5
Relative Time Alarms .. 4-5
System-state Alarms .. 4-6

Events ... 4-8
The Wait and Signal Operations .. 4-9
The F$Event System Call ... 4-10

Pipes ... 4-11
Named and Unnamed Pipes ... 4-11
Operations on Pipes ... 4-12

Creating Pipes .. 4-12
Opening Pipes .. 4-12
Read/ReadLn ... 4-13
Write/WriteLn ... 4-13
Close ... 4-14
Getstat/Setstat ... 4-14
Pipe Directories.. 4-15

Data Modules .. 4-16
Creating Data Modules .. 4-16
The Link Count.. 4-16
Saving to Disk.. 4-17

User Trap Handlers
Trap Handlers .. 5-1
Installing and Executing Trap Handlers .. 5-3
OS9 and tcall: Equivalent Assembly Language Syntax .. 5-3
Calling a Trap Handler (Two Examples)... 5-4
An Example Trap Handler ... 5-6
Trace of Example Two using the Example Trap Handler ... 5-9

The Math Module
Standard Function Library Module.. 6-1
Calling Standard Function Module Routines... 6-3
Data Formats.. 6-4
The Math Module .. 6-4
Math Functions .. 6-5

Table of Contents Table of Contents

OS-9 Technical Manual vii

OS-9 File System
Disk File Organization... 7-1

Basic Disk Organization .. 7-1
Identification Sector... 7-2
Allocation Map .. 7-3
Root Directory ... 7-3
Basic File Structure.. 7-3
Segment Allocation.. 7-4
Directory File Format .. 7-5

Raw Physical I/O on RBF Devices.. 7-6
Record Locking.. 7-7

Record Locking and Unlocking ... 7-7
Non-sharable Files ... 7-8
End of File Lock .. 7-8
Deadlock Detection.. 7-9

Record Locking Details for I/O Functions .. 7-10
File Security ... 7-11

Appendix A: Example Code ... A-1
Init Module.. A-1
Sysgo Module .. A-6
Signals: Example Program... A-8
Alarms: Example Program... A-10
Events: Example Program ... A-12
C Trap Handler ... A-14
RBF Device Descriptor... A-20
SCF Device Descriptor ... A-25
SBF Device Descriptor ... A-27

Appendix B: Path Descriptors and Device Descriptors...B-1
RBF Device Descriptor Modules...B-1
RBF Definitions of the Path Descriptor...B-10
SCF Device Descriptor Modules ...B-13
SCF Definitions of the Path Descriptor ...B-18
SBF Device Descriptor Modules ...B-20
SBF Definitions of the Path Descriptor ...B-23
Pipeman Definitions of the Path Descriptor ..B-24

Error Codes ...Error Codes -1

Table of Contents Table of Contents

viii OS-9 Technical Manual

OS-9 System Calls
Introduction .. i
User-state System Calls .. 1-1
I/O System Calls .. 2-1
System-state System Calls... 3-1
System Call Indexes (by name and function)

Introduction Manual Organization

OS-9 Technical Manual ix

Manual Organization

The OS-9® Technical Manual is organized into two main sections: The OS-9 Technical Overview
and the OS-9 System Calls.

The OS-9 Technical Overview contains the following chapters and appendixes:

• Chapter 1 - System Overview
Provides a general overview of OS-9’s four levels of modularity, I/O processing, memory
modules, and program modules.

• Chapter 2 - The Kernel
Outlines the responsibilities of the kernel. Explains user and system state processing, memory
management, system initialization, process creation and scheduling, and exception and
interrupt processing.

• Chapter 3 - OS-9 Input/Output System
Explains the software components of the OS-9 I/O system and the relationships between those
components.

• Chapter 4 - Interprocess Communications
Describes the five forms of interprocess communication supported by OS-9: signals, alarms,
events, pipes, and data modules.

Introduction

Introduction

x OS-9 Technical Manual

• Chapter 5 - User Trap Handlers
Explains how to install and execute trap handlers, and provides an example of trap handler
coding.

• Chapter 6 - The Math Module
Discusses math module functions, and lists descriptions of the assembler calls you can use with
the math module.

• Chapter 7 - RBF File System
Explains OS-9’s disk file organization, raw physical I/O on RBF devices, record locking, and
file security.

• Appendix A - Example Code
Contains example code that you can use as a guide when creating your own modules. Provides
examples of RBF, SCF, and SBF device descriptors.

• Appendix B - Path Descriptors and Device Descriptors
Includes the device descriptor initialization table definitions and path descriptor option tables
for RBF, SCF, SBF, and PIPEMAN type devices.

• Error Codes
Provides descriptions of OS-9 error codes.

The OS-9 System Calls section contains descriptions for the following types of system calls:

• Chapter 1 - User-State System Calls

• Chapter 2 - I/O System Calls

• Chapter 3 - System-State System Calls

The OS-9 Technical Manual is designed for you to use in conjunction with the OS-9 Technical I/O
Manual.

OS-9 Technical Manual 1 - 1

System Modularity

OS-9® has four levels of modularity. These are described below and illustrated in Figure 1-1.

• Level 1 - The Kernel, the Clock, and the Init Modules
The Kernel provides basic system services including Input/Output (I/O) management, process
control, and resource management. The Clock module is a software handler for the specific
real-time-clock hardware. The Init module is an initialization table the kernel uses during sys-
tem startup.

• Level 2 - File Managers
File Managers process I/O requests for similar classes of I/O devices. Refer to the I/O
Overview in this chapter for a list of the File Managers Microware currently supports.

• Level 3 - Device Drivers
Device Drivers handle the basic physical I/O functions for specific I/O controllers. Standard
OS-9 systems are typically supplied with a disk driver, serial port drivers for terminals and
serial printers, and a driver for parallel printers. You can also add customized drivers of your
own design or purchase drivers from a hardware vendor.

System Overview

System Modularity System Overview

1 - 2 OS-9 Technical Manual

• Level 4 - Device Descriptors
Device Descriptors are small tables that associate specific I/O ports with their logical name,
device driver, and file manager. These modules also contain the physical address of the port
and initialization data. By using device descriptors, only one copy of each driver is required
for each specific type of I/O device, regardless of how many devices the system uses.

For specific information about file managers, device drivers, and device descriptors, refer to the I/O
Overview (in this chapter), the OS-9 I/O System (Chapter 3), and the OS-9 Technical I/O Manual.

File Managers

OS-9 KERNEL
Clock

Math Trap Handlers
Init

User Applications
and Utilities

Device Drivers

Device Descriptors

Figure 1-1: OS-9 Module Organization

NOTE: The shaded boxes contain non-executable code. These modules are referenced, not “called.” The
kernel, file managers, and drivers reference descriptors directly, but only the kernel references the Init
module directly.

CIO Library

User Trap Handlers

System Overview System Modularity

OS-9 Technical Manual 1 - 3

An important component, the command interpreter (the Shell), is not shown in the above diagram. The
Shell is an application program, not part of the operating system. It is described fully in Using
Professional OS-9. To obtain a list of the specific modules that make up OS-9 for your system, use the
Ident utility on the OS9Boot file.

Although all modules could be resident in ROM, the system bootstrap module is usually the only ROMed
module in disk-based systems. All other modules are loaded into RAM during system startup.

I/O Overview System Overview

1 - 4 OS-9 Technical Manual

I/O Overview
The kernel maintains the I/O system for OS-9. It provides the first level of I/O service by routing system
call requests between processes, and the appropriate file managers and device drivers. Microware includes
the following File Managers in the standard professional distribution:

• RBF The Random Block File Manager handles I/O for random-access, block-struc-
tured devices, such as floppy/hard disk systems.

• SCF The Sequential Character File Manager handles I/O for sequentially character-
structured devices, such as terminals, printers, and modems.

• SBF The Sequential Block File Manager handles I/O for sequentially block-struc-
tured devices, such as tape systems.

• PIPEMAN The Pipe File Manager supports interprocess communications through memory
buffers called pipes.

For specific information about the above file managers, refer to the OS-9 I/O System (Chapter 4) or the
OS-9 Technical I/O Manual.

Microware also supports the following File Managers which are not included in the standard professional
distribution:

• PCF PC File Manager handles reading/writing PC-DOS disks. It uses RBF drivers
and is sold separately.

• NFM Network File Manager processes data requests over the OS-9 network. The OS-
9/NFM package includes NFM.

• ENPMAN ENP10 Socket File Manager transfers requests to and from CMC ENP10
boards. OS-9/ESP, the Ethernet Support Package, includes NPMAN.

• SOCKMAN Socket File Manager creates and manages the interface to communication pro-
tocols (sockets). OS-9/ISP, the Internet Support Package, includes SOCK-
MAN.

• IFMAN Communications Interface File Manager manages network interfaces. OS-9/
ISP, the Internet Support Package, includes IFMAN.

• PKMAN Pseudo-Keyboard File Manager provides an interface to the driver side of SCF
to enable the software to emulate a terminal. OS-9/ESP and OS-9/ISP Packages
include PKMAN.

System Overview I/O Overview

OS-9 Technical Manual 1 - 5

• GFM The Graphics File Manager provides a full set of text and graphics primitives,
input handling for keyboards and pointers, and high level features for handling
user interaction in a real time, multi-tasking environment. The OS-9 RAVE
package includes the Graphics File Manager.

• UCM The User Communications Manager handles video, pointer, and keyboard de-
vices for CDI (Compact Disc Interactive). The CD-RTOS package includes
UCM.

• CDFM The Compact Disc File Manager handles CD and audio devices, as well as ac-
cess to CD ROM and CD audio. The CD-RTOS package includes CDFM.

• NRF The Non-Volatile RAM File Manager controls non-volatile RAM and handles
a flat (non-hierarchical) directory structure. The CD-RTOS package includes
NRF.

I/O Overview System Overview

1 - 6 OS-9 Technical Manual

Figure 1-2 illustrates how OS-9 processes an I/O request:

File Manager

OS-9 KERNEL

User Process

Device Driver

The user makes a request for
data/status.

The Kernel identifies and
validates the I/O request and the
identifies the appropriate File
Manager, Device Driver, and
other necessary resources.
Then, the Kernel passes the
request to the appropriate File
Manager.

The File Manager validates the
request and performs device-
independent processing. The
File Manager calls the Device
Driver for hardware interaction,
as needed.

The Device Driver performs
device-specific processing and
usually transfers the data/status
back to the File Manager.

The File Manager monitors and
processes the data/status and
makes requests to the Kernel
for dynamic memory
allocation, as needed.

The Kernel works with the File
Manager to return the data/
status to the user.

The user receives the data/
status.

Figure 1-2: Processing an OS-9 I/O Request

System Overview Memory Modules

OS-9 Technical Manual 1 - 7

Memory Modules

OS-9 is unique in that it uses memory modules to manage both the physical assignment of memory to
programs and the logical contents of memory. A memory module is a logical, self-contained program,
program segment, or collection of data.

OS-9 supports ten pre-defined types of modules and allows you to define your own module types. Each
type of module has a different function. Modules do not have to be complete programs or written in
machine language. However, they must be re-entrant, position-independent, and conform to the basic
module structure described in the next section.

The 68000 instruction set supports a programming style called re-entrant code, that is, code that does not
modify itself. This allows two or more different processes to share one “copy” of a module
simultaneously. The processes do not affect each other, provided that each process has an independent
area for its variables.

Almost all OS-9 family software is re-entrant, and therefore uses memory very efficiently. For example,
Scred requires 26K bytes of memory to load. If you make a request to run Scred while another user
(process) is running it, OS-9 allows both processes to share the same copy, thus saving 26K of memory.

NOTE: Data modules are an exception to the re-entrant requirement. However, careful coordination is
required for several processes to update a shared data module simultaneously.

It does not matter where a position-independent module is loaded in memory. This allows OS-9 to load
the program wherever memory space is available. In many operating systems, you must specify a load
address to place the program in memory. OS-9 determines an appropriate load address for you when the
program is run.

OS-9 compilers and interpreters automatically generate position-independent code. In assembly language
programming, however, the programmer must insure position-independence by avoiding absolute address
modes. Alternatives to absolute addressing are described in the OS-9/68000 Assembler/Linker/
Debugger User’s Manual.

Basic Module Structure System Overview

1 - 8 OS-9 Technical Manual

Basic Module Structure

Each module has three parts: a module header, a module body, and a CRC value (see Figure 1-3).

The module body contains initialization data, program instructions, constant tables, etc.

The last three bytes of the module hold a CRC value (Cyclic Redundancy Check value) to verify the
module’s integrity. The linker creates the CRC at link-time.

The CRC Value

The CRC (Cyclic Redundancy Check) is an error checking method used frequently in data
communications and storage systems. It is also a vital part of the ROM memory module search technique.
A CRC value is at the end of all modules to check the validity of the entire module. It provides an
extremely reliable assurance that programs in memory are intact before execution, and is an effective
backup for the error detection systems of disk drives, memory systems, etc.

OS-9 computes a 24-bit CRC value over the entire module, starting at the first byte of the module header
and ending at the byte just before the CRC itself. OS-9 family compilers and linkers automatically
generate the module header and CRC values. If required, your program can use the F$CRC system call
to compute a CRC value over any specified databytes. Refer to F$CRC in the OS-9 System Calls
manual for a full description of how F$CRC computes a module’s CRC.

OS-9 does not recognize a module with an incorrect CRC value. Therefore, you must update the CRC
value of any “patched” or modified module, or OS-9 cannot load the module from disk or find it in ROM.
Use the OS-9 Fixmod utility to update the CRC’s of patched modules.

The module header contains information that de-
scribes the module and its use. It is defined in as-
sembly language by a psect directive. The linker
creates the header at link-time. The information
contained in the module header includes the mod-
ule’s name, size, type, language, memory require-
ments, and entry point. For specific information
about the structure and individual fields of the
module header, refer to the list at the end of this
chapter.

MODULE HEADER

MODULE BODY

CRC VALUE

Figure 1-3: Basic Memory Module Format

Initialization data
Program/Constants

System Overview ROMed Memory Modules

OS-9 Technical Manual 1 - 9

ROMed Memory Modules

When a system reset starts OS-9, the kernel searches for modules in ROM. It detects them by looking for
the module header sync code ($4AFC). When the kernel detects this byte pattern, it checks the header
parity to verify a correct header. If this test succeeds, the kernel obtains the module size from the header
and computes a 24-bit CRC over the entire module. If the computed CRC is valid, the module is entered
into the module directory.

OS-9 links to all of its component modules found during the search. It automatically includes in the system
module directory all ROMed modules present in the system at startup. This allows you to create systems
that are partially or completely ROM-based. It also includes any non-system modules found in ROM.
This allows location of user-supplied software during the start-up process, and its entry into the module
directory.

Module Header Definitions

The following table and Figure 1-4 list definitions of the standard set of fields in the module header.

Name Description

M$ID Sync bytes ($4AFC)
These constant bytes identify the start of a module.

M$SysRev System revision identification
Identifies the format of a module.

M$Size Size of module
The overall module size in bytes, including header and CRC.

M$Owner Owner ID
The group/user ID of the module’s owner.

M$Name Offset to module name
The address of the module name string relative to the start (first sync byte) of the module.
The name string can be located anywhere in the module and consists of a string of ASCII
characters terminated by a null (zero) byte.

Module Header Definitions System Overview

1 - 10 OS-9 Technical Manual

Name Description

M$Accs Access permissions
Defines the permissible module access by its owner or other users. Module access
permissions are divided into four sections:

reserved (4 bits)
public (4 bits)
group (4 bits)
owner (4 bits)

Each of the non-reserved permission fields is defined as:

bit 3 reserved
bit 2 execute permission
bit 1 write permission
bit 0 read permission

The total field is displayed as:

-----ewr-ewr-ewr

M$Type Module Type Code
Module type values are in the oskdefs.d file. They describe the module type code as:

Name Description

 0 Not Used (Wild Card value in system calls)
Prgm 1 Program Module
Sbrtn 2 Subroutine Module
Multi 3 Multi-Module (reserved for future use)
Data 4 Data Module
CSDData 5 Configuration Status Descriptor
 6-10 Reserved for future use
TrapLib 11 User Trap Library
Systm 12 System Module (OS-9 component)
Flmgr 13 File Manager Module
Drivr 14 Physical Device Driver
Devic 15 Device Descriptor Module
 16-up User Definable

System Overview Module Header Definitions

OS-9 Technical Manual 1 - 11

Name Description

M$Lang Language
You can find module language codes in the oskdefs.d file. They describe whether the
module is executable and which language the run-time system requires for execution (if
any):

Name Description

 0 Unspecified Language (Wild Card value in system calls)
Objct 1 68000 machine language
ICode 2 Basic I-code
PCode 3 Pascal P-code
CCode 4 C I-code (reserved for future use)
CblCode 5 Cobol I-code
FrtnCode 6 Fortran
I-code 7-15 Reserved for future use
 16-255 User Definable

NOTE: Not all combinations of module type codes and languages necessarily make sense.

M$Attr Attributes
Bit 5 - Module is a “system state” module.

Bit 6 - Module is a sticky module. A sticky module is retained in memory when its link
count becomes zero. The module is removed from memory when its link count becomes -
1 or memory is required for another use.

Bit 7 - Module is re-entrant (sharable by multiple tasks).

M$Revs Revision level
The module’s revision level. If two modules with the same name and type are found in the
memory search or loaded into memory, only the module with the highest revision level is
kept. This enables easy substitution of modules for update or correction, especially
ROMed modules.

M$Edit Edition
The software release level for maintenance. OS-9 does not use this field. Every time a
program is revised (even for a small change), increase this number. We recommend that
you key internal documentation within the source program to this system.

Module Header Definitions System Overview

1 - 12 OS-9 Technical Manual

Name Description

M$Usage Comments
Reserved for offset to module usage comments (not currently used).

M$Symbol Symbol table offset
Reserved for future use.

M$Parity Header parity check
The one’s complement of the exclusive-OR of the previous header “words.” OS-9 uses this
for a quick check of the module’s integrity.

NOTE: Offset refers to the location of a module field, relative to the starting address of the module.
Resolve module offsets in assembly code by using the names shown here and linking the module with the
relocatable library, sys.l or usr.l.

Offset Name Usage

$00
$02
$04
$08
$0C
$10
$12
$13
$14
$15
$16
$18
$1C
$20
$2E
$30-up

M$ID
M$SysRev
M$Size
M$Owner
M$Name
M$Accs
M$Type
M$Lang
M$Attr
M$Revs
M$Edit
M$Usage
M$Symbol

Reserved
M$Parity

Module Type Dependent
Module Body
CRC Check

Sync Bytes ($4AFC)
Revision ID
Module Size
Owner ID
Module Name Offset*
Access Permissions
Module Type
Module Language
Attributes
Revision Level
Edit Edition
Usage Comments Offset*
Symbol Table

Header Parity Check

* These fields are offset to strings

Figure 1-4: Module Header Standard Fields

System Overview Additional Header Fields For Individual Modules

OS-9 Technical Manual 1 - 13

Additional Header Fields For Individual Modules

Program, Trap Handler, Device Driver, File Manager, and System modules have additional standard
header fields following the universal offsets. These additional fields are listed below and shown in Figure
1-5.

The program module is a common type of module (type: Prgm; language: Objct). A program module is
executable as an independent process by the F$Fork or F$Chain system calls. The assembler and C
compilers produce program modules, and most OS-9 commands are program modules. Program module
headers have six fields in addition to the universal set.

Chapter 4 describes trap handler modules. The OS-9 Technical I/O Manual describes File Manager
modules and Device Drivers modules.

Name Description

(Program, Trap Handler, Device Driver, File Manager, and System Module Headers use the following
two fields.)

M$Exec Execution offset
The offset to the program’s starting address. In the case of a file manager or driver, this is
the offset to the module’s entry table.

M$Excpt Default user trap execution entry point
The relative address of a routine to execute if an uninitialized user trap is called.

(Program, Trap Handler, and Device Driver Module Headers use the following field.)

M$Mem Memory size
The required size of the program’s data area (storage for program variables).

(Program and Trap Handler Module Headers use the following three fields.)

M$Stack Stack size
The minimum required size of the program’s stack area.

M$IData Initialized data offset
The offset to the initialization data area’s starting address. This area contains values to
copy to the program’s data area. The linker places all constant values declared in vsects
here. The first four-byte value is the offset from the beginning of the data area to which the
initialized data is copied. The next four-byte value is the number of initialized data-bytes
to follow.

Additional Header Fields For Individual Modules System Overview

1 - 14 OS-9 Technical Manual

Name Description

M$IRefs Initialized references offset
The offset to a table of values to locate pointers in the data area. Initialized variables in the
program’s data area may contain values that are pointers to absolute addresses. Adjust code
pointers by adding the absolute starting address of the object code area. Adjust the data
pointers by adding the absolute starting address of the data area.

The F$Fork system call does the effective address calculation at execution time using
tables created in the module. The first word of each table is the most significant (MS) word
of the offset to the pointer. The second word is a count of the number of least significant
(LS) word offsets to adjust. F$Fork makes the adjustment by combining the MS word with
each LS word entry. This offset locates the pointer in the data area. The pointer is adjusted
by adding the absolute starting address of the object code or the data area (for code pointers
or data pointers respectively). It is possible after exhausting this first count that another MS
word and LS word are given. This continues until a MS word of zero and a LS word of
zero are found.

(Trap Handler Module Headers use the following two fields.)

M$Init Initialization execution offset
The offset to the trap initialization entry point.

M$Term Termination execution offset
The offset to the trap termination entry point. This offset is reserved by Microware for
future use.

System Overview Additional Header Fields For Individual Modules

OS-9 Technical Manual 1 - 15

NOTE: Offset refers to the location of a module field, relative to the starting address of the module.
Resolve module offsets in assembly code by using the names shown here and linking the module with the
relocatable library: sys.l or usr.l.

Module Type:

 Manager
 /System

 Device Driver

Program

Trap Handlers

Offset
$30
$34

$38
$3C
$40
$44
$48
$4C

Usage
Execution Offset
Default User Trap Execution
Entry Point
Memory Size
Stack Size
Initialized Data Offset
Initialized Reference Offset
Initialization Execution Offset
Termination Execution Offset

 File

Figure 1-5: Additional Header Fields for Individual Modules

End of Chapter 1

OS-9 Technical Manual 2 - 1

 Responsibilities of the Kernel

The kernel is the nucleus of OS-9. It manages resources, controls processing, and supervises
Input/Output. It is a ROMable, compact OS-9 module.

The kernel’s primary responsibility is to process and coordinate system calls, or service requests. OS-9
has two general types of system calls:

• Calls that perform Input/Output, such as reads and writes.

• Calls that perform system functions. System functions include memory management, system
initialization, process creation and scheduling, and exception/interrupt processing.

When a system call is made, a user trap to the kernel occurs. The kernel determines what type of system
call the user wants to perform. It directly executes the calls that perform system functions, but does not
execute I/O calls. The kernel provides the first level of processing for each I/O call, then completes the
function as required by calling the appropriate file manager or driver.

For information on specific system calls, refer to the OS-9 System Calls section of this manual.

For specific information about creating new file managers, and examples which you can adapt to your spe-
cific system needs, refer to the OS-9 Technical I/O Manual.

The Kernel

System Call Overview: User-state and System-state The Kernel

2 - 2 OS-9 Technical Manual

System Call Overview
For information about specific system calls, refer to OS-9 System Calls.

User-state and System-state

To understand OS-9’s system calls, you should be familiar with the two distinct OS-9 environments in
which object code can be executed:

User-state The normal program environment in which processes execute. Generally, user-
state processes do not deal directly with the specific hardware configuration of
the system.

System-state The environment in which OS-9 system calls and interrupt service routines ex-
ecute. On 68000-family processors, this is synonymous with supervisor state.
System-state routines often deal with physical hardware present on a system.

Functions executing in system state have distinct advantages over those running in user state, including
the following:

• A system-state routine has access to all of the processor’s capabilities. For example, on
memory protected systems, a system-state routine may access any memory location in the
system. It may mask interrupts, alter OS-9 internal data structures, or take direct control of
hardware interrupt vectors.

• Some OS-9 system calls are only accessible from system state.

• System-state routines are never time-sliced. Once a process enters system state, no other
process executes until the system-state process finishes or goes to sleep (F$Sleep waiting for
I/O). The only processing that may preempt a system-state routine is interrupt servicing.

System-state characteristics make it the only way to provide certain types of programming functions. For
example, it is almost impossible to provide direct I/O to a physical device from user state. Not all
programs, however, should run in system state. Reasons to use user-state processing rather than system-
state processing include:

• User-state routines are time-sliced. In a multi-user environment, it is important to ensure that
each user receives a fair share of the CPU time.

• Memory protection prevents user-state routines from accidentally damaging data structures
they do not own.

• A user-state process can be aborted. If a system-state routine loses control, the entire system
usually crashes.

The Kernel System Call Overview: User-state and System-state

OS-9 Technical Manual 2 - 3

• System-state routines are far more difficult and dangerous to debug than user-state routines.
You can use the user-state debugger to find most user-state problems. Generally, system-state
problems are much more difficult to find.

• User-state programs are essentially isolated from physical hardware. Because they are not
concerned with I/O details, they are easier to write and port.

Installing System-state Routines

System-state routines have direct access to all system hardware, and have the power to take over the entire
machine, crashing or hanging up the system. To help prevent this, OS-9 limits the methods of creating
routines that operate in system state.

There are four ways to provide system-state routines:

• Install an OS9P2 module in the system bootstrap file or in ROM. During cold start, the OS-9
kernel links to this module, and if found, calls its execution entry point. The most likely thing
for such a module to do is install new system call codes. The drawback to this method is that
the OS9P2 module must be in ROM or in the bootfile when the system is bootstrapped.

• Use the I/O system as an entry into system state. File managers and device drivers always
execute in system state. The most obvious reason to write system-state routines is to provide
support for new hardware devices. It is possible to write a dummy device driver and use the
I$GetStt or I$SetStt routines to provide a gateway to the driver.

• Write a trap handler module that executes in system state. For routines of limited use that are
dynamically loaded and unlinked, this may be the most convenient method. In many cases, it
is practical to debug most of the trap handler routines in user state, then convert the trap module
to system state. To make a trap handler execute in system state, you must set the supervisor
state bit in the module attribute byte and create the module as super user. When the user trap
executes, it is in system state.

• A program executes in system state if the supervisor state bit in the module’s attribute word is
set and the module is owned by the super user. This can be useful in rare instances.

IMPORTANT REMINDER: System-state routines are not time-sliced, therefore they should be as short
and fast as possible.

Kernel System Call Processing The Kernel

2 - 4 OS-9 Technical Manual

Kernel System Call Processing

All OS-9 system calls (service requests) are processed through the kernel. The system-wide relocatable
library files, sys.l and usr.l, define symbolic names for all system calls. The files are linked with hand-
written assembly language or compiler-generated code. The OS-9 Assembler has a built-in macro to
generate system calls:

OS9 I$Read

This is recognized and assembled to produce the same code as:

TRAP #0
dc.w I$Read

In addition, the C Compiler standard library includes functions to access nearly all user mode OS-9 system
calls from C programs.

Parameters for system calls are usually passed and returned in registers. There are two general types of
system calls: system function calls (calls that do not perform I/O) and I/O calls.

System Function Calls

There are two types of system function calls, user-state and system-state:

User-state System Calls
These requests perform memory management, multi-tasking, and other functions for user
programs. They are mainly processed by the kernel.

System-state System Calls
Only system software in system state can use these calls, and they usually operate on internal OS-
9 data structures. To preserve OS-9’s modularity, these requests are system calls rather than
subroutines. User-state programs cannot access them, but system modules such as device drivers
may use them.

The symbolic name of each system function call begins with F$. For example, the system call to link a
module is F$Link.

In general, system-state routines may use any of the user-state system calls. However, you must avoid
making system calls at inappropriate times. For example, avoid I/O calls, timed sleep requests, and other
calls that can be particularly time consuming (such as F$CRC) in an interrupt service routine.

Memory requested in system state is not recorded in the process descriptor memory list. Therefore, you
must ensure that the memory is returned to the system before the process terminates.

The Kernel Kernel System Call Processing

OS-9 Technical Manual 2 - 5

WARNING: Avoid the F$TLink and F$Icpt system calls in system-state routines. Certain portions of
the C library may be inappropriate for use in system state.

I/O Calls

I/O calls perform various I/O functions. The file manager, device driver, and kernel process I/O calls for
a particular device. The symbolic names for this category of calls begin with I$. For example, the read
service request is I$Read.

You may use any I/O system call in a system-state routine, with one slight difference than when executed
in user-state. All path numbers used in system state are system path numbers. Each process descriptor has
a path number that converts process local path numbers into system path numbers. The system itself has
a global path number table to convert system path numbers into actual addresses of path descriptors. You
must make system-state I/O system calls using system path numbers.

For example, the OS-9 F$PErr system call prints an error message on the caller’s standard error path. To
do this, it may not simply perform output on path number two. Instead it must examine the caller’s process
descriptor and extract the system path number from the third entry (0, 1, 2, ...) in the caller’s path table.

When a user-state process exits with I/O paths open, the F$Exit routine automatically closes the paths.
This is possible because OS-9 keeps track of the open paths in the process’s path table. In system state,
the I$Open and I$Create system calls return a system path number which is not recorded in the process
path table or anywhere else by OS-9. Therefore, the system-state routine that opens any I/O paths must
ensure that the paths are eventually closed, even if the underlying process is abnormally terminated.

Memory Management The Kernel

2 - 6 OS-9 Technical Manual

Memory Management
To load any object (such as a program or constant table) into memory, the object must have the standard
OS-9 memory module format as described in Chapter 1. This enables OS-9 to maintain a module directory
to keep track of modules in memory. The module directory contains the name, address, and other related
information about each module in memory.

OS-9 adds the module to the module directory when it is loaded into memory. Each directory entry
contains a link count. The link count is the number of processes using the module.

When a process links to a module in memory, the module’s link count increments by one. When a process
unlinks from a module, the module’s link count decrements by one. When a module’s link count becomes
zero, its memory is de-allocated and it is removed from the module directory, unless the module is sticky.

A sticky module is not removed from memory until its link count becomes -1 or memory is required for
another use. A module is sticky if the sixth bit of the module header’s attribute field (M$Attr) is set.

The Kernel Memory Management: OS-9/68000 Memory Map

OS-9 Technical Manual 2 - 7

OS-9 Memory Map

OS-9 uses a software memory management system that contains all memory within a single memory map.
Therefore, all user tasks share a common address space.

A map of a typical OS-9 memory space is shown in Figure 2-1. Unless otherwise noted, the sections
shown need not be located at specific addresses. However, Microware recommends that you keep each
section in contiguous reserved blocks, arranged in an order that facilitates future expansion. Whenever
possible, it is best to have physically contiguous RAM.

NOTE: For the 68020, 68030, 68040, and CPU32 family of CPUs, you can set the Vector Base Register
(VBR) anywhere in the system. Thus, for these types of systems, there is no requirement that RAM or
ROM be at address 0.

Bootstrap ROM and/or Optional ROM’s
For System or Application Software

I/O Device Addresses

Unused: Available For Future
RAM or ROM Expansion

RAM
128K minimum

512K recommended
(the more the better)

ROM or RAM For Exception Vectors

ROM Reset Vectors

Highest Memory Address

Bootstrap ROM located here
with first 8 bytes (reset vector)
also mapped to vector
locations: 000000-000007.

RAM in multiples of 8K
contiguous, expanded

Address 000400

Address 000008

Address 000000

Figure 2-1: Typical OS-9 Memory Map

upward

Memory Management: System Memory Allocation The Kernel

2 - 8 OS-9 Technical Manual

System Memory Allocation

During the OS-9 start-up sequence, an automatic search function in the kernel and the boot ROM finds
blocks of RAM and ROM. OS-9 reserves some RAM for its own data structures. ROM blocks are
searched for valid OS-9 ROM modules.

OS-9 requires a variable amount of memory. Actual requirements depend on the system configuration and
the number of active tasks and open files. The following sections describe approximate amounts of
memory used by various parts of OS-9.

Operating System Object Code

A complete set of typical operating system component modules (kernel, file managers, device drivers,
device descriptors, tick driver) occupies about 50K to 64K bytes of memory. On disk-based systems, these
modules are normally bootstrap-loaded into RAM. OS-9 does not dynamically load overlays or swap
system code; therefore, no additional RAM is required for system code.

You can place OS-9 in ROM for non-disk systems. The typical operating system object code for ROM-
based, non-disk systems occupies about 30K to 40K bytes.

System Global Memory

OS-9 uses a minimum of 8K RAM for internal use. The system global memory area is usually located at
the lowest RAM addressed. It contains an exception jump table, the debugger/boot variables, and a system
global area. Variables in the system global area are symbolically defined in the sys.l library and the
variable names begin with D_. The Reset SSP vector points to the system global area.

WARNING: User programs should never directly access system global variables because of issues such
as portability and (depending on hardware) memory protection. System calls are provided to allow user
programs to read the information in this area.

System Dynamic Memory

OS-9 maintains dynamic-sized data structures (such as I/O buffers, path descriptors, process descriptors,
etc.) which are allocated from the general RAM area when needed. The System Global Memory area
keeps pointers to the addresses of these data structures. A typical small system uses approximately 16K
of RAM. The total depends on elements such as the number of active devices, the memory, and the
number of active processes. The sys.l library source files include the exact sizes of all the system’s data
structure elements.

The Kernel Memory Management: System Memory Allocation

OS-9 Technical Manual 2 - 9

Free Memory Pool

All unused RAM memory is assigned to a free memory pool. Memory space is removed and returned to
the pool as it is allocated or de-allocated for various purposes. OS-9 automatically assigns memory from
the free memory pool whenever any of the following occur:

• Modules are loaded into RAM.

• New processes are created.

• Processes request additional RAM.

• OS-9 requires more I/O buffers or its internal data structures must be expanded.

Storage for user program object code modules and data space is dynamically allocated from and de-
allocated to the free memory pool. User object code modules are automatically shared if two or more tasks
execute the same object program. User object code application programs can also be stored in ROM
memory.

The total memory required for user memory depends largely on the application software to be run.
Microware suggests that you have a system minimum of 128K plus an additional 64K per user available.
Alternatively, small ROM-based control system might only need 32K of memory.

Memory Management: Memory Fragmentation The Kernel

2 - 10 OS-9 Technical Manual

Memory Fragmentation

Once a program is loaded, it must remain at the address where it was originally loaded. Although position-
independent programs can be initially placed at any address where free memory is available, program
modules cannot be relocated dynamically after they are loaded. This can lead to memory fragmentation.

When programs are loaded, they are assigned the first sufficiently large block of memory at the highest
address possible in the address space. (If a colored memory request is made, this may not be true. Refer
to the following section for more information on colored memory.) If a number of program modules are
loaded, and subsequently one or more non-contiguous modules are unlinked, several fragments of free
memory space exist. The total free memory space may be quite large. However, because it is scattered,
not enough space will exist in a single block to load a particular program module.

You can avoid memory fragmentation by loading modules at system startup. This places the modules in
contiguous memory space. Or, you can initialize each standard device when booting the system. This
allows the devices to allocate memory from higher RAM than would be available if the devices were
initialized after booting.

If serious memory fragmentation does occur, the system administrator can kill processes and unlink
modules in ascending order of importance until there is sufficient contiguous memory to proceed. Use the
mfree utility to determine the number and size of free memory blocks.

The Kernel Memory Management: Colored Memory

OS-9 Technical Manual 2 - 11

Colored Memory

OS-9 colored memory allows a system to recognize different memory types and reserve areas for special
purposes. For example, you could design a part of a system’s RAM to store video images and battery back
up another part. The kernel allows isolation and specific access of areas of RAM like these. You can
request specific memory types or “colors” when allocating memory buffers, creating modules in memory,
or loading modules into memory. If a specific type of memory is not available, the kernel returns error
#237, E$NoRAM.

Colored memory lists are not essential on systems with RAM consisting of one homogeneous type,
although they can improve system performance on some systems and allow greater flexibility in
configuring memory search areas. The default memory allocation requests are still appropriate for most
homogeneous systems and for applications which do not require one memory type over another. Colored
memory lists are required for the F$Trans system call to perform address translation.

Colored Memory Definition List

The kernel must have a description of the CPU’s address space to make use of the colored memory
routines. You can establish colored memory by including a colored memory definition list (MemList) in
the systype.d file, which then becomes part of the Init module. The list describes each memory region’s
characteristics. The kernel searches each region in the list for RAM during system startup.

A colored memory definition list contains the following information:

• Memory Color (type)

• Memory Priority

• Memory Access Permissions

• Local Bus Address

• Block Size the kernel’s coldstart routine uses to search the area for RAM or ROM

• External Bus Translation Address (for DMA, dual-ported RAM, etc.)

• Optional name

The memory list may contain as many regions as needed. If no list is specified, the kernel automatically
creates one region that describes the memory found by the bootstrap ROM.

MemList is a series of MemType macros defined in systype.d and used by init.a. Each line in the
MemList must contain all the following parameters, in order:

type, priority, attributes, blksiz, addr begin, addr end, name, DMA-offset

Memory Management: Colored Memory The Kernel

2 - 12 OS-9 Technical Manual

The colored memory list must end with a longword of zero. The following describes the MemList
parameters:

Parameter Size Definition

Memory Type word Type of memory. Three memory types are currently defined in
memory.h:

SYSRAM 0x01 System RAM memory
VIDEO1 0x80 Video memory for plane A
VIDEO2 0x81 Video memory for plane B

Priority word Priority of memory (0-255). High priority memory is allocated
first. If the block priority is 0, then the block can only be allo-
cated by a request for the specific color (type) of the block.

Access permissions word Memory type access bit definitions:

bit 0 B_USER User processes can allocate this
memory.

NOTE: This bit is ignored if the
B_ROM bit is set.

bit 1 B_PARITY Parity memory; the kernel initializes
this memory during startup.

NOTE: Only B_USER memory may
be initialized.

bit 2 B_ROM ROM; the kernel searches this memory
for modules during startup.

NOTE: B_ROM memory cannot be
allocated by processes, as the B_USER
and B_PARITY bits are ignored if
B_ROM is set.

Search Block Size word The kernel checks every search block size to see if RAM/ROM
exists.

Low Memory Limit long Beginning address of the block, as referenced by the CPU.

High Memory Limit long End address of the block, as referenced by the CPU.

The Kernel Memory Management: Colored Memory

OS-9 Technical Manual 2 - 13

Parameter Size Definition

Description String Offset word Offset of a user-defined string that describes the type of memory
block.

Address Translation long The external bus address of the beginning of the
Adjustment block. If zero, this field does not apply. Refer to

 F$Trans for more information.

The following is an example system memory map:

CPU Address Bus Address Memory Size Physical Location

$00000000 $00200000 $200000 on-board cpu ram
$00600000 $00600000 $200000 VMEbus ram

A corresponding MemList table might appear as follows:

* memory list definitions for init module (user adjustable)
 align
* MemType type, prior, attributes, blksiz, addr limits, name, DMA-offset
MemList
* on-board ram covered by "rom memory list:"
* - this memory block is known to the "rom’s memory list," thus it was
* "parity initialized" by the rom code.
* - the cpu’s local base address of the block is at $00000000.
* - the bus base address of the block is at $200000.
* - this ram is fastest access for the cpu, so it has the highest priority.
*
 MemType SYSRAM,255,B_USER,4096,0,$200000,OnBoard,$200000

* off-board expansion ram
* - this memory block is not known to the "rom’s memory list,"
* thus it needs "parity initialization" by the kernel.
* - as the block is accessed over the bus, the base address of the block
* is the same for cpu and dma accesses.
* - this ram is slower access than on-board ram, therefore it
* has a lower priority than the on-board ram.
*
 MemType SYSRAM,250,B_USER+B_PARITY,4096,$600000,$800000,OffBoard,0
 dc.l 0 end of list

OnBoard dc.b "fast on-board RAM",0
OffBoard dc.b "VMEbus memory",0

Memory Management: Colored Memory The Kernel

2 - 14 OS-9 Technical Manual

Colored Memory in Homogenous Memory Systems

Colored memory definitions are not essential for homogenous memory systems. However, colored
memory definitions in this type of system can improve system performance and simplify memory list re-
configuration.

System Performance

In a homogeneous memory system, the kernel allocates memory from the top of available RAM when
requests are made by F$SRqMem (for example, when loading modules). If the system has RAM on-
board the CPU and off-board in external memory boards, the modules tend to be loaded into the off-board
RAM, because OS-9 always uses high memory first. On-board RAM is not used for a F$SRqMem call
until the off-board memory is unable to accommodate the request.

Programs running in off-board memory execute slower than those running in on-board memory, due to bus
access arbitration. Also, external bus activity increases. This may impact the performance of other bus
masters in the system.

The colored memory lists can be used to reverse this tendency in the kernel, so that a CPU does not use
off-board memory until all of its on-board memory is utilized. This results in faster program execution
and less saturation of the system’s external bus. Do this by making the priority of the on-board memory
higher than off-board memory, as shown in the example lists on the preceding page.

Re-configuring Memory Areas

In a homogeneous memory system, the memory search areas are defined in the ROM’s Memory List. If
you do not use colored memory, you must make new ROMs from source code (usually impossible for end-
users) or from a patched version of the original ROMs (usually difficult for end-users) to make changes to
the memory search areas.

The colored memory lists simplify changes by configuring the search areas as follows:

• The ROM’s memory list describes only the on-board memory.

• The colored memory lists in systype.d define the on-board memory and any external bus
memory search areas in the Init module only.

The use of colored memory in a homogeneous memory system allows you to easily reconfigure the
external bus search areas by adjusting the lists in systype.d and making a new Init module. The ROM
does not require patching.

The Kernel System Initialization: Init

OS-9 Technical Manual 2 - 15

System Initialization
After a hardware reset, the bootstrap ROM executes the kernel (which is located in ROM or loaded from
disk, depending on the system involved). The kernel initializes the system, which includes locating ROM
modules and running the system startup task (usually Sysgo).

Init: The Configuration Module

Init is a non-executable module of type Systm (code $0C) which contains a table of system startup
parameters. During startup, Init specifies initial table sizes and system device names, but it is always
available to determine system limits. It must be in memory when the kernel executes and usually resides
in the OS9Boot file or in ROM.

The Init module begins with a standard module header (Chapter 1, Figure 1-4) and the additional fields
shown in the following table and in Figure 2-2.

NOTE: Refer to Appendix A for an example program listing of the Init module. Offset names are defined
in the relocatable library sys.l.

Name Description

M$PollSz IRQ polling size
The number of entries in the IRQ polling table. Each interrupt generating device control
register requires one entry. The IRQ polling table has 32 entries by default. Each table
entry is 18 bytes long.

M$DevCnt Device table size
The number of entries in the system device table. Each device on the system requires one
entry in this table.

M$Procs Initial process table size
The initial number of active processes allowed in the system. If this table gets full, it
automatically expands as needed.

M$Paths Initial path table size
The initial number of open paths in the system. If this table gets full, it automatically
expand as needed.

M$SParam Offset to parameter string for startup module
The offset to the parameter string (if any) to pass to the first executable module.

System Initialization: Init The Kernel

2 - 16 OS-9 Technical Manual

Name Description

M$SysGo First executable module name offset
The offset to the name string of the first executable module, usually Sysgo or Shell.

M$SysDev Default directory name offset
The offset to the initial default directory name string, usually /d0 or /h0. The kernel does
a chd and chx to this device prior to forking the initial device. If the system does not use
disks, this offset must be zero.

M$Consol Initial I/O pathlist name offset
The offset to the initial I/O pathlist string, usually /term. This pathlist is opened as the
standard I/O path for the initial process. It is generally used to set up the initial I/O paths
to and from a terminal. This offset should contain zero if no console device is in use.

M$Extens Customization module name offset
The offset to the name string of a list of customization modules (if any). A customization
module complements or changes the existing OS-9 standard system calls. These modules
are searched for at startup; they are usually found in the bootfile. If found, they execute in
system state. Module names in the name string are separated by spaces. The default name
string to search for is OS9P2. If there are no customization modules, set this value to zero.

NOTE: A customization module may only alter the d0, d1, and ccr registers.

NOTE: Customization modules must be system-type modules.

M$Clock Clock module name offset
The offset to the clock module name string. If there is no clock module name string, set
this value to zero.

M$Slice Time-slice
The number of clock ticks per time-slice. If M$Slice is not specified, it defaults to 2.

M$Site Offset to installation site code
This value is usually set to zero. OS-9 does not currently use this field.

M$Instal Offset to installation name
The offset to the installation name string.

M$CPUTyp CPU Type
CPU type: 68000, 68008, 68010, 68020, 68030, 68040, 68070, 683xx.

The Kernel System Initialization: Init

OS-9 Technical Manual 2 - 17

Name Description

M$OS9Lvl Level, version, and edition
This four byte field is divided into three parts:

level: 1 byte version: 2 bytes edition: 1 byte

For example, level 2, version 2.4, edition 0 would be 2240.

M$OS9Rev Revision offset
The offset to the OS-9 level/revision string.

M$SysPri Priority
The system priority at which the first module (usually Sysgo or Shell) executes. This is
generally the base priority at which all processes start.

M$MinPty Minimum priority
The initial system minimum executable priority. For specific information on minimum
priority, see the Process Execution section later in this chapter and F$SetSys in Chapter 1
of OS-9 System Calls.

M$MaxAge Maximum age
The initial system maximum natural age. For specific information on maximum age, see
the Process Execution section later in this chapter and F$SetSys in Chapter 1 of OS-9
System Calls.

M$Events Number of entries in the events table
The initial number of entries allowed in the events table. If the table gets full, it automati-
cally expands as needed. See the Events section of Chapter 3 for more specific information.

System Initialization: Init The Kernel

2 - 18 OS-9 Technical Manual

Name Description

M$Compat Revision compatibility
This byte is used for revision compatibility. The following bits are currently defined:

Bit# Function

0 Set to save all registers for IRQ routines
1 Set to prevent the kernel from using stop instructions
2 Set to ignore sticky bit in module headers
3 Set to disable cache burst operation (68030 systems)
4 Set to patternize memory when allocated or de-allocated
5 Set to prevent kernel cold-start from starting system clock

M$Compat2 Revision compatibility #2
This byte is used for revision compatibility. The following bits are currently defined:

Bit# Function

0 0 External instruction cache is not snoopy*
1 External instruction cache is snoopy or absent

1 0 External data cache is not snoopy
1 External data cache is snoopy or absent

2 0 On-chip instruction cache is not snoopy
1 On-chip instruction cache is snoopy or absent

3 0 On-chip data cache is not snoopy
1 On-chip data cache is snoopy or absent

7 0 Kernel disables data caches when in I/O
1 Kernel does not disable data caches when in I/O

* snoopy = cache that maintains its integrity without software intervention.

The Kernel System Initialization: Init

OS-9 Technical Manual 2 - 19

Name Description

M$MemList Colored memory list
An offset to the memory segment list. The colored memory list contains an entry for each
type of memory in the system. It is terminated by a long word of zero. See F$SRqCMem
for further information. Each entry in the list has the following format:

M$IRQStk Kernel’s IRQ stack size
The size (in LONGWORDS) of the kernel’s IRQ stack. The value of this field must be 0,
or >= 256 and <=$ffff. If zero, the kernel uses a small default IRQ stack (not
recommended).

M$ColdTrys Retry counter
This is the retry counter if the kernel’s initial chd (to the default system device) fails.

Offset Description

VIDEO1 = Plane A Video
VIDEO2 = Plane B Video

$02 Priority

$06
$08
$10
$12
$14
$18
$1C

Search block size
Low memory limit
Offset to description string
Reserved (must be zero)
Address translation adjustment
Reserved (must be zero)
Reserved (must be zero)

$04 Access permissions:
B_USER = User processes allocate memory.

$00 Memory Type: SYSRAM = System RAM

B_PARITY = Parity memory; kernel
initializes it during startup.

 B_ROM = ROM; kernel searches this for
 modules during startup.

System Initialization: Init The Kernel

2 - 20 OS-9 Technical Manual

NOTE: Offset refers to the location of a module field, relative to the starting address of the module.
Module offsets are resolved in assembly code by using the names shown here and linking the module with
the relocatable library: sys.l or usr.l.

Offset Name Description

$30 Reserved Currently reserved for future use.
$34 M$PollSz Number of IRQ polling table entries.
$36 M$DevCnt Device table size.
$38 M$Procs Initial process table size.
$3A M$Paths Initial path table size.
$3C M$SParam Parameter string for startup module (usually Sysgo).
$3E M$SysGo Offset to name string of first executable module.
$40 M$SysDev Offset to the initial default directory name string.
$42 M$Consol Offset to the initial I/O pathlist string.
$44 M$Extens Offset to a name string of customization modules.
$46 M$Clock Offset to the clock module name string.
$48 M$Slice Number of clock ticks per time-slice.
$4A Reserved Currently reserved for future use.
$4C M$Site Offset to the installation site code.
$50 M$Instal Offset to the installation name string.
$52 M$CPUTyp CPU type.
$56 M$OS9Lvl Level, version, and edition number of the operating system.
$5A M$OS9Rev Offset to the OS-9 level/revision string.
$5C M$SysPri Initial system priority.
$5E M$MinPty Initial system minimum executable priority.
$60 M$MaxAge Initial system maximum natural age.
$62 Reserved Currently reserved for future use.
$66 M$Events Initial number of entries allowed in the events table.
$68 M$Compat Compatibility flag one. Byte is used for revision compatibility.
$69 M$Compat2 Compatibility flag two. Byte is used for revision compatibility.
$6A M$MemList Offset to the memory segment list.
$6C M$IRQStk Size of the kernel’s IRQ stack.
$6E M$ColdTrys Retry counter if the kernel’s initial chd fails.

NOTE: The strings themselves follow the 28 byte reserved section.

Figure 2-2: Additional Fields for the Init Module

The Kernel System Initialization: Sysgo

OS-9 Technical Manual 2 - 21

Sysgo

Sysgo is the first user process started after the system startup sequence. Its standard I/O is on the system
console device.

Sysgo usually executes as follows:

¿ Changes to the CMDS execution directory on the system device.

¡ Executes the startup file (as a script) from the root of the system device.

¬ Forks a shell on the system console.

Ð Waits for that shell to terminate and then forks it again. Therefore, there is always a shell
running on the system console, unless Sysgo dies.

You cannot use the standard Sysgo module for disk systems on non-disk systems, but it is easy to
customize.

You may eliminate Sysgo by specifying shell as the initial startup module and specifying a parameter
string similar to:

startup; ex tsmon /term

See Appendix A for an example source listing of the Sysgo module.

System Initialization: Customization Modules The Kernel

2 - 22 OS-9 Technical Manual

Customization Modules

Customization modules are additional modules you can execute at boot time to enhance OS-9’s
capabilities. They provide a convenient way to install a new system call code or collection of system call
codes, for example, a system security module. The kernel calls the modules at boot time if their names are
specified in the extension list of the Init module and the kernel can locate them.

NOTE: Customization modules may only modify the d0, d1, and ccr registers.

To include a customization module in the system, you can either burn the module into ROM or complete
the following steps:

¿ Assemble/link the module so that the final object code appears in the /h0/CMDS/BOOTOBJS
directory.

¡ Create a new Init module:

Change to the DEFS directory and edit the CONFIG macro in the systype.d file. The
name of the new module must appear in the Init module extension list. For example, if the
name of the new module is mine, add the following line immediately before the endm line:

Extens dc.b "os9p2 mine",0

NOTE: os9p2 is the name of the default customization module.

Remake the Init module.

¬ Create a new bootfile:

Change to the /h0/CMDS/BOOTOBJS directory and edit the bootlist file so that the
customization module name appears in the list.

Create a new bootfile with the os9gen utility. For example:

os9gen /h0fmt -z=bootlist

Ð Reboot the system and make sure that the new module is operational.

The Kernel Process Creation

OS-9 Technical Manual 2 - 23

Process Creation
All OS-9 programs run as processes or tasks. The F$Fork system call creates new processes. The name
of the primary module that the new process is to execute initially is the most important parameter passed
in the fork system call. The following outlines the creation process:

¿ Locate or Load the Program.
OS-9 tries to find the module in memory. If it cannot find the module, it loads a mass-storage
file into memory using the requested module name as a file name.

¡ Allocate and Initialize a Process Descriptor.
After OS-9 locates the primary module, it assigns a data structure called a process descriptor
to the new process. The process descriptor is a table that contains information about the
process: its state, memory allocation, priority, I/O paths, etc. The process descriptor is
automatically initialized and maintained. The process does not need to know about the
descriptor’s existence or contents.

¬ Allocate the Stack and Data Areas.
The primary module’s header contains a data and stack size. OS-9 allocates a contiguous
memory area of the required size from the free memory space. The following section discusses
process memory areas.

Ð Initialize the Process.
OS-9 sets the new process’s registers to the proper addresses in the data area and object code
module (see Figure 2-3). If the program uses initialized variables and/or pointers, they are
copied from the object code area to the proper addresses in the data area.

If OS-9 cannot perform any of these steps, it aborts the creation of the new process and notifies the process
that originated the fork of the error. If OS-9 completes all the steps, it adds the new process to the active
process queue for execution scheduling.

The new process is also assigned a process ID. This is a unique number which is the process’s identifier.
Other processes can communicate with it by referring to its ID in system calls. The process also has an
associated group ID and user ID. These identify all processes and files belonging to a particular user and
group of users. The group and user ID’s are inherited from the parent process.

Processes terminate when they execute an F$Exit system service request or when they receive fatal signals
or errors. Terminating the process closes any open paths, de-allocates the process’s memory, and unlinks
its primary module.

Process Creation The Kernel

2 - 24 OS-9 Technical Manual

PRIMARY MODULE
HIGHEST

Initialization Data
Executable Object Code

Module Header

DATA AREA
Parameters

Stack

REGISTER CONTENTS

pc = module entry point
(a3) = module starting address

(a1) = top of memory pointer

(a6) = data area base address

Registers passed to the new process:

ADDRESS CRC Check Value

Variables

(a5)/(a7) = parameter starting

 (lowest address)

 address/stack top

NOTE: (a6) is always biased by $8000 to allow object programs to access 64K of
data using indexed addressing. You can usually ignore this bias because the
OS-9 linker automatically adjusts for it.

LOWEST
ADDRESS

Figure 2-3: New Process’s Initial Memory Map And Register Contents

sr 0000 (a0) undefined
pc module entry point (a1) top of memory pointer
d0.w process ID (a2) undefined
d1.l group/user ID (a3) primary module pointer
d2.w priority (a4) undefined
d3.w # of paths inherited (a5) parameter pointer
d4.l undefined (a6) static storage (data area) base pointer
d5.l parameter size (a7) stack pointer (same as a5)
d6.l total initial memory

allocation
d7.l undefined

The Kernel Process Creation: Memory Areas

OS-9 Technical Manual 2 - 25

Process Memory Areas

OS-9 divides all processes (programs) into two logically separate memory areas: code and data. This
division provides OS-9’s modular software capabilities.

Each process has a unique data area, but not necessarily a unique program memory module. This allows
two or more processes to share the same copy of a program. This technique is an automatic function of
OS-9 and results in extremely efficient use of available memory.

A program must be in the form of an executable memory module (described in Chapter 1) to be run. The
program is position-independent and ROMable, and the memory it occupies is considered read-only. It
may link to and execute code in other modules.

The process’s data area is a separate memory space where all of the program’s variables are kept. The top
part of this area is used for the program’s stack. The actual memory addresses assigned to the data area
are unknown at the time the program is written. A base address is kept in a register (usually a6) to access
the data area. You can read or write to this area.

If a program uses variables that require initialization, OS-9 copies the initial values from the read-only
program area to the data area where the variables actually reside. The OS-9 linker builds appropriate
initialization tables which initialize the variables.

Process States

A process is either in active, waiting, or sleeping state:

ACTIVE The process is active and ready for execution. The scheduler gives active processes
time for execution according to their relative priority with respect to all other active
processes. It uses a method that compares the ages of all active processes in the
queue. It gives some CPU time to all active processes, even if they have a very low
relative priority.

WAITING The process is inactive until a child process terminates or until a signal is received.
The process enters the wait state when it executes a F$Wait system service request.
It remains inactive until one of its descendant processes terminates or until it
receives a signal.

Process Creation: Process States The Kernel

2 - 26 OS-9 Technical Manual

SLEEPING The process is inactive for a specified period of time or until it receives a signal. A
process enters the sleep state when it executes an F$Sleep service request.
F$Sleep specifies a time interval for which the process is to remain inactive.
Processes often sleep to avoid wasting CPU time while waiting for some external
event, such as the completion of I/O. Zero ticks specifies an infinite period of time.
Processes waiting on an event are also included in the sleep queue.

There is a separate queue (linked list of process descriptors) for each process state. State changes are made
by moving a process descriptor from its current queue to another queue.

The Kernel Process Scheduling

OS-9 Technical Manual 2 - 27

Process Scheduling
OS-9 is a multi-tasking operating system, that is, two or more independent programs, called processes or
tasks, can execute simultaneously. Several processes share each second of CPU time. Although the
processes appear to run continuously, the CPU only executes one instruction at a time. The OS-9 kernel
determines which process, and how long, to run based on the priorities of the active processes. Task-
switching is the action of switching from the execution of one process to another. Task-switching does
not affect the programs’ execution.

A real-time clock interrupts the CPU at every tick. By default, a tick is .01 second (10 milliseconds). At
any occurrence of a tick, OS-9 can suspend execution of one program and begin execution of another. The
tick length is hardware dependent. Thus, to change the tick length, you must rewrite the clock driver and
re-initialize the hardware.

A slice or time-slice is the longest amount of time a process will control the CPU before the kernel re-
evaluates the active process queue. By default, a slice is two ticks. You can change the number of ticks
per slice by adjusting the system global variable D_TSlice or by modifying the Init module.

To ensure efficiency, only processes on the active process queue are considered for execution. The active
process queue is organized by process age, a count of how many task switches have occurred since the
process entered the active queue plus the process’s initial priority. The oldest process is at the head of the
queue. OS-9’s scheduling algorithm allocates some execution time to each active process.

When a process is placed in the active queue, its age is set to the process’s assigned priority and the ages
of all other processes increment. Ages never increment beyond $FFFF.

After the currently executing process’s time-slice, the kernel executes the process with the highest age.

Pre-emptive Task-switching

During critical real-time applications you sometimes need fast interrupt response time. OS-9 provides this
by pre-empting the currently executing process when a process with a higher priority becomes active. The
lower priority process loses the remainder of its time-slice and is re-inserted into the active queue.

Task-switching is affected by two system global variables: D_MinPty (minimum priority) and
D_MaxAge (maximum age). Both variables are initially set in the Init module. Users with a group ID of
zero (super users) can access both variables through the F$SetSys system call.

If a process’s priority or age is less than D_MinPty, the process is not considered for execution and is not
aged. Usually, this variable is not used; it is set to zero.

Process Scheduling The Kernel

2 - 28 OS-9 Technical Manual

WARNING: If the minimum system priority is set above the priority of all running tasks, the system is
completely shut down. You must reset to recover. Therefore, it is crucial to restore D_MinPty to a normal
level when the critical task(s) finishes.

D_MaxAge is the maximum age to which a process can increment. When D_MaxAge is activated, tasks
are divided into two classes, high priority and low priority:

• High priority tasks receive all of the available CPU time and do not age.

• Low priority tasks do not age past D_MaxAge. Low priority tasks are run only when the high
priority tasks are inactive. Usually, this variable is not used; it is set to zero.

NOTE: A system-state process is not pre-empted until it finishes, unless it voluntarily gives up its time-
slice. This exception is made because system-state processes may be executing critical routines that affect
shared system resources which may block other unrelated processes.

The Kernel Exception and Interrupt Processing

OS-9 Technical Manual 2 - 29

Exception and Interrupt Processing
One of OS-9’s features is its extensive support of the 68K family advanced exception/interrupt system.
You can install routines to handle particular exceptions using various OS-9 system calls for the types of
exceptions.

Vector Related
Number OS-9 Call Assignment

0 none Reset initial Supervisor Stack Pointer (SSP)
1 none Reset initial Program Counter (PC)
2 F$STrap Bus error
3 F$STrap Address error
4 F$STrap Illegal instruction
5 F$STrap Zero divide
6 F$STrap CHK instruction; CHK2 (CPU32)
7 F$STrap TRAPV instruction
8 F$STrap Privilege violation
9 F$DFork Trace
10 F$STrap Line 1010 emulator
11 F$STrap Line 1111 emulator
12 none Reserved (000/008/010/070); hardware break point (CPU32)
13 none Reserved
14 none Reserved (000/008); format error (010/070/CPU32)
15 none Uninitialized interrupt
16-23 none Reserved
24 none Spurious interrupt
25-31 F$IRQ Level 1-7 interrupt autovectors
32 F$OS9 User TRAP #0 instruction (OS-9 call)
33-47 F$TLink User TRAP #1-15 instruction vectors
48-56 none Reserved
57-63 none/F$IRQ Reserved (000/008/010/CPU32)

on-chip level 1-7 auto-vectored interrupts (070)
64-255 F$IRQ Vectored interrupts (user defined)

Figure 2-4: Vector Descriptions for 68000/008/010/070/CPU32 Family

Exception and Interrupt Processing The Kernel

2 - 30 OS-9 Technical Manual

Vector Related
Number OS-9 Call Assignment

0 none Reset initial Supervisor Stack Pointer (SSP)
1 none Reset initial Program Counter (PC)
2 F$STrap Bus error
3 F$STrap Address error
4 F$STrap Illegal instruction
5 F$STrap Zero divide
6 F$STrap CHK, CHK2
7 F$STrap TRAPV cpTRAPcc, TRAPcc
8 F$STrap Privilege violation
9 F$DFork Trace
10 F$STrap Line 1010 emulator
11 F$STrap Line 1111 emulator
12 none Reserved
13 none Coprocessor protocol violation (020,030 only);

reserved (040)
14 none Format error
15 none Uninitialized interrupt
16-23 none Reserved
24 none Spurious interrupt
25-31 F$IRQ Level 1-7 interrupt autovectors
32 F$OS9 User TRAP #0 instruction (OS-9 call)
33-47 F$TLink User TRAP #1-15 instruction vectors
48 F$STrap FPCP Branch, or set on unordered condition
49 F$STrap FPCP Inexact result
50 F$STrap FPCP Divide by zero
51 F$STrap FPCP Underflow error
52 F$STrap FPCP Operand error
53 F$STrap FPCP Overflow error
54 F$STrap FPCP NAN signaled
55 F$STrap Reserved (020/030);

FPCP Unimplemented data type (040)
56 none PMMU Configuration (020/030); reserved (040)
57 none PMMU Illegal Operation (020); reserved (030/040)

The Kernel Exception and Interrupt Processing

OS-9 Technical Manual 2 - 31

58 none PMMU Access Level Violation (020); reserved (030/040)
59-63 none Reserved
64-255 F$IRQ Vectored interrupts (user defined)

Figure 2-5: Vector Descriptions for 68020/030/040

Exception and Interrupt Processing The Kernel

2 - 32 OS-9 Technical Manual

Reset Vectors: vectors 0, 1

The reset initial SSP vector contains the address loaded into the system’s stack pointer at startup. There
must be at least 4K of RAM below and 4K of RAM above this address for system global storage. Each
time an exception occurs, OS-9 uses this vector to find the base address of system global data.

The reset initial program counter (PC) is the coldstart entry point to OS-9. After startup, its only use is to
reset after a catastrophic failure.

WARNING: User programs should not use or modify either of these vectors.

Error Exceptions: vectors 2-8, 10-24, 48-63

These exceptions are usually considered fatal program errors and cause a user program to unconditionally
terminate. If F$DFork created the process, the process resources remain intact and control returns to the
parent debugger to allow a postmortem examination.

You may use the F$STrap system call to install a user subroutine to catch the errors in this group that are
considered non-fatal.

When an error exception occurs, the user subroutine executes in user state, with a pointer to the normal
data space used by the process and all user registers stacked. The exception handler must decide whether
and where to continue execution.

If any of these exceptions occur in system state, it usually means a system call was passed bad data and an
error is returned. In some cases, system data structures are damaged by passing nonsense parameters to
system calls.

NOTE: Not all catchable exception vectors are applicable to all 68000-family CPUs. For example,
vectors 48-54 (FPCP exceptions) only apply to 68020 and 68030 CPUs.

The Trace Exception: vector 9

The trace exception occurs when the status register trace bit is set. This allows the MPU to single step
instructions. OS-9 provides the F$DFork, F$DExec, and F$DExit system calls to control program
tracing.

The Kernel AutoVectored Interrupts: vectors 25-31

OS-9 Technical Manual 2 - 33

AutoVectored Interrupts: vectors 25-31; 57-63 (68070 only)

These exceptions provide interrupt polling for I/O devices that do not generate vectored interrupts.
Internally, they are handled exactly like vectored interrupts (see below).

WARNING: Normally, you should not use Level 7 interrupts because they are non-maskable and can
interrupt the system at dangerous times. You may use Level 7 interrupts for software refresh of dynamic
RAMs or similar functions, provided that the IRQ service routine does not use any OS-9 system calls or
system data structures.

User Traps: vectors 32-47

The system reserves user trap zero (vector 32) for standard OS-9 system service requests. The remaining
15 user traps provide a method to link to common library routines at execution time.

Library routines are similar to program object code modules and are allocated their own static storage
when installed by the F$TLink service request. The execution entry point executes whenever the user trap
is called. In addition, trap handlers have initialization and termination entry points which execute when
linked and at process termination. The termination entry point is not currently implemented.

NOTE: Trap 13 (CIO) and trap 15 (math) are standard trap handlers distributed by Microware.

Vectored Interrupts: vectors 64-255

The 192 vectored interrupts provide a minimum amount of system overhead in calling a device driver
module to handle an interrupt. Interrupt service routines execute in system state without an associated
current process. The device driver must provide an error entry point for the system to execute if any error
exceptions occur during interrupt processing, although this entry point is not currently implemented. The
F$IRQ system call installs a handler in the system’s interrupt tables. If necessary, multiple devices may
be used on the same vector.

End of Chapter 2

OS-9 Technical Manual 3-1

The OS-9 Unified Input/Output System

OS-9 features a versatile, unified, hardware-independent I/O system. The I/O system is modular; you can
easily expand or customize it. The OS-9 I/O system consists of the following software components:

• The kernel.

• File managers.

• Device drivers.

• The device descriptor.

The kernel, file managers, and device drivers process I/O service requests at different levels. The device
descriptor contains information used to assemble the elements of a particular I/O subsystem. The file
manager, device driver, and device descriptor modules are standard memory modules. You can install or
remove any of these modules while the system is running.

The kernel supervises the overall OS-9 I/O system. The kernel:

• Maintains the I/O modules by managing various data structures. It ensures that the appropriate
file manager and device driver modules process each I/O request.

• Establishes paths. These are the connections between the kernel, the application, the file
manager, and the device driver.

File managers perform the processing for a particular class of devices, such as disks or terminals. They
deal with “logical” operations on the class of devices. For example, the Random Block File manager
(RBF) maintains directory structures on disks; the Sequential Character File manager (SCF) edits the data
stream it receives from terminals. File managers deal with the I/O requests on a generic “class” basis.

OS-9
Input/Output

System

The OS-9 Unified Input/Output System OS-9 Input/Output System

3-2 OS-9 Technical Manual

Device drivers operate on a class of hardware. Operating on the actual hardware device, they send data to
and from the device on behalf of the file manager. They isolate the file manager from hardware
dependencies such as control register organization and data transfer modes, translating the file manager’s
logical requests into specific hardware operations.

The device descriptor contains the information required to assemble the various components of an I/O sub-
system (that is, a device). It contains the names of the file manager and device driver associated with the
device, as well as the device’s operating parameters. Parameters in device descriptors can be fixed, such
as interrupt level and port address, or variable, such as terminal editing settings and disk physical param-
eters. The variable parameters in device descriptors provide the initial default values when a path is
opened, but applications can change these values. The device descriptor name is the name of a device as
known by the user. For example, the device /d0 is described by the device descriptor d0.

OS-9 Input/Output System The OS-9 Unified Input/Output System

OS-9 Technical Manual 3-3

The Kernel and I/O

The kernel provides the first level of service for I/O system calls by routing data between processes and
the appropriate file managers and device drivers. The kernel also allocates and initializes global static
storage on behalf of file managers and device drivers.

The kernel maintains two important internal data structures: the device table and the path table. These
tables reflect two other structures respectively: the device descriptor and the path descriptor.

When a path is opened, the kernel attempts to link to the device descriptor associated with the device name
specified (or implied) in the pathlist. The device descriptor contains the names of the device driver and
file manager for the device. The information in the device descriptor is saved by the kernel in the device
table so that it can route subsequent system calls to these modules.

Paths maintain the status of I/O operations to devices and files. The kernel maintains these paths using the
path table. Each time a path is opened, a path descriptor is created and an entry is added to the path table.
When a path is closed, the path descriptor is de-allocated and its entry is deleted from the path table.

When an I$Attach system call is first performed on a new device descriptor, the kernel creates a new entry
in the device table. Each entry in the table has specific information from the device descriptor concerning
the appropriate file manager and driver. It also contains a pointer to the device driver static storage. For
each device in the table, the kernel maintains a use count which indicates the current number of device
users.

Device Descriptor Modules OS-9 Input/Output System

3-4 OS-9 Technical Manual

Device Descriptor Modules

Device descriptor modules are small, non-executable modules that contain information to associate a spe-
cific I/O device with its logical name, hardware controller address(es), device driver name, file manager
name, and initialization parameters.

File managers operate on a class of logical devices. Device drivers operate on a class of physical devices.
A device descriptor module tailors a device driver or file manager to a specific I/O port. At least one
device descriptor module must exist for each I/O device in the system. An I/O device may have several
device descriptors with different initialization parameters and names. For example, a serial/parallel driver
could have two device descriptors, one for terminal operation (/T1) and one for printer operation (/P1).

If a suitable device driver exists, adding devices to the system consists of adding the new hardware and
another device descriptor. Device descriptors can be in ROM, in the boot file, or loaded into RAM while
the system is running.

The name of the module is used as the logical device name by the system and user (that is, it is the device
name given in pathlists). Its format consists of a standard module header that has a type code of device
descriptor (DEVIC). The remaining module header fields are shown in Figure 3-1 and described below.

NOTE: These fields are standard for all device descriptor modules. They are followed by a device
specific initialization table. Refer to Appendix B of this manual for the initialization tables of each
standard class of I/O devices (RBF, SCF, SBF).

Name Description
M$Port Port address

The absolute physical address of the hardware controller.

M$Vector Interrupt vector number
The interrupt vector associated with the port, used to initialize hardware and for
installation on the IRQ poll table:

25-31 for an auto-vectored interrupt. Levels 1 - 7.
57-63 for 68070 on-chip auto-vectored interrupts. Levels 1 - 7.
64-255 for a vectored interrupt.

Name Description
M$IRQLvl Interrupt level

The device’s physical interrupt level. It is not used by the kernel or file manager. The
device driver may use it to mask off interrupts for the device when critical hardware
manipulation occurs.

M$Prior Interrupt polling priority

OS-9 Input/Output System Device Descriptor Modules

OS-9 Technical Manual 3-5

Indicates the priority of the device on its vector. Smaller numbers are polled first if
more than one device is on the same vector. A priority of zero indicates the device
requires exclusive use of the vector.

M$Mode Device mode capabilities
This byte is used to validate a caller’s access mode byte in I$Create or I$Open calls.
If the bit is set, the device is capable of performing the corresponding function. If the
Share_bit (single user bit) is set here, the device is non-sharable. This is useful for
printers.

M$FMgr File manager name offset
The offset to the name string of the file manager module for this device.

M$PDev Device driver name offset
The offset to the name string of the device driver module for this device.

M$DevCon Device configuration
The offset to an optional device configuration table. You can use it to specify
parameters or flags that the device driver needs and are not part of the normal
initialization table values. This table is located after the standard initialization table.
The kernel or file manager never references it. As the pointer to the device descriptor
is passed in INIT and TERM, M$DevCon is generally available to the driver only
during the driver’s INIT and TERM routines. Other routines in the driver (for example,
Read) must first search the device table to locate the device descriptor before they can
access this field.

Typically, this table is used for name string pointers, OEM global allocation pointers,
or device-specific constants/flags. NOTE: These values, unlike the standard options,
are not copied into the path descriptors options section.

M$Opt Table size
This contains the size of the device’s standard initialization table. Each file manager
defines a ceiling on M$Opt.

Name Description
M$DTyp Device type (first field of initialization table)

The device’s standard initialization table is defined by the file manager associated with
the device, with the exception of the first byte (M$DTyp). The first byte indicates the
class of the device (RBF, SCF, etc.).

Path Descriptors OS-9 Input/Output System

3-6 OS-9 Technical Manual

The initialization table (M$DTyp through M$DTyp + M$Opt) is copied into the option
section of the path descriptor when a path to the device is opened. Typically, this table
is used for the default initialization parameters such as the delete and backspace char-
acters for a terminal. Applications may examine all of the values in this table using
$GetStt (SS_Opt). Some of the values may be changed using I$SetStt; some are pro-
tected by the file manager to prevent inappropriate changes.

The theoretical maximum initialization table size is 128 bytes. However, a file manager
may restrict this to a smaller value.

NOTE: Offset refers to the location of a module field, relative to the starting address of the module.
Module offsets are resolved in assembly code by using the names shown here and linking with the
relocatable library: sys.l or usr.l.

You may wish to add additional devices to your system. If an identical device controller already exists,
simply add the new hardware and another device descriptor. Device descriptors can be in ROM, in the
boot file, or loaded into RAM from mass storage files while the system is running.

Path Descriptors

Every open path is represented by a data structure called a path descriptor. It contains information required
by file managers and device drivers to perform I/O functions. Path descriptors are dynamically allocated
and de-allocated as paths are opened and closed.

Offset Description
$30 M$Port Port Address
$34 M$Vector Trap Vector Number
$35 M$IRQLvl IRQ Interrupt Level
$36 M$Prior IRQ Polling Priority
$37 M$Mode Device Mode Capabilities
$38 M$FMgr File Manager Name Offset
$3A M$PDev Device Driver Name Offset
$3C M$DevCon Device Configuration Offset
$3E Reserved
$46 M$Opt Initialization Table Size
$48 M$DTyp Device Type

Figure 3-1: Additional Standard Header Fields For Device Descriptors

Name

OS-9 Input/Output System PATH DESCRIPTORS

OS-9 Technical Manual 3-7

Path descriptors have three sections:

• The first 30 bytes are defined universally for all file managers and device drivers.

• PD_FST is reserved for and defined by each type of file manager for file pointers, permanent
variables, etc.

• PD_OPT is a 128-byte option area used for dynamically alterable operating parameters for the
file or device. These variables are initialized at the time the path is opened by copying the ini-
tialization table contained in the device descriptor module, and can be examined or altered later
by user programs via GetStat and SetStat system calls. Not all options can be modified.

Refer to Appendix B for the current definitions of the path descriptor option area for each standard class
of I/O devices (that is, RBF, SCF, SBF, and Pipes). The definitions are included in sys.l or usr.l, and are
linked into programs that need them.

PATH DESCRIPTORS OS-9 Input/Output System

3-8 OS-9 Technical Manual

NOTE: Offset refers to the location of a module field, relative to the starting address of the module. Mod-
ule offsets are resolved in assembly code by using the names shown here and linking the module with the
relocatable libraries, sys.l, or usr.l.

Offset Name Maintained By Description
$00 PD_PD Kernel Path Number
$02 PD_MOD Kernel Access Mode (R W E S D)
$03 PD_CNT Kernel Number of Paths using this PD (obsolete)
$04 PD_DEV Kernel Address of Related Device Table Entry
$08 PD_CPR Kernel Requester’s Process ID
$0A PD_RGS Kernel Address of Caller’s MPU Register Stack
$0E PD_BUF File Manager Address of Data Buffer
$12 PD_USER Kernel Group/User ID of Original Path Owner
$16 PD_PATHS Kernel List of Open Paths on Device
$1A PD_COUNT Kernel Number of Paths using this PD
$1C PD_LProc Kernel Last Active Process ID
$20 PD_ErrNo File Manager Global “errno” for C language file managers
$24 PD_SysGlob File Manager System global pointer for C language file

managers
$2A PD_FST File Manager File Manager Working Storage
$80 PD_OPT Driver/File Man. Option Table

Figure 3-2: Universal Path Descriptor Definitions

OS-9 Input/Output System File Managers

OS-9 Technical Manual 3-9

 File Managers

File managers process the raw data stream to or from device drivers for a class of similar devices. File
managers make device drivers conform to the OS-9 standard I/O and file structure by removing as many
unique device operational characteristics as possible from I/O operations. They are also responsible for
mass storage allocation and directory processing, if applicable, to the class of devices they service.

File managers usually buffer the data stream and issue requests to the kernel for dynamic allocation of
buffer memory. They may also monitor and process the data stream. For example, they may add line feed
characters after carriage return characters.

File managers are re-entrant. One file manager may be used for an entire class of devices having similar
operational characteristics. OS-9 systems can have any number of file manager modules.

NOTE: I/O system modules must have the following module attributes:

• They must be owned by a super-user (0.n).

• They must have the system-state bit set in the attribute byte of the module header. (OS-9 does
not currently make use of this, but future revisions will require that I/O system modules be
system-state modules.)

Four file managers are included in a typical OS-9 system:

RBF (Random Block File Manager)
Operates random-access, block-structured devices such as disk systems.

SCF (Sequential Character File Manager)
Used with single-character-oriented devices such as CRT or hardcopy terminals, printers, and mo-
dems.

SBF (Sequential Block File Manager)
Used with sequential block-structured devices such as tape systems.

PIPEMAN (Pipe File Manager)
Supports interprocess communication through memory buffers called pipes.

File Manager Organization OS-9 Input/Output System

3-10 OS-9 Technical Manual

File Manager Organization

A file manager is a collection of major subroutines accessed through an offset table. The table contains
the starting address of each subroutine relative to the beginning of the table. The location of the table is
specified by the execution entry point offset in the module header. These routines are called in system
state. A sample listing of the beginning of a file manager module is listed in Figure 3-3.

When the individual file manager routines are called, standard parameters are passed in the following
registers:

(a1) Pointer to Path Descriptor.
(a4) Pointer to current Process Descriptor.
(a5) Pointer to User’s Register Stack; User registers pass/receive parameters

as shown in the system call description section.
(a6) Pointer to system Global Data area.

* Sample File Manager
* Module Header declaration

Type_Lang equ (FlMgr<<8)+Objct
Attr_Revs equ ((ReEnt+Supstat)<<8)+0

psect FileMgr,Type_Lang,Attr_Revs,Edition,0,Entry_pt

* Entry Offset Table
Entry_pt dc.w Create-Entry_pt
 dc.w Open-Entry_pt
 dc.w MakDir-Entry_pt
 dc.w ChgDir-Entry_pt
 dc.w Delete-Entry_pt
 dc.w Seek-Entry_pt
 dc.w Read-Entry_pt
 dc.w Write-Entry_pt
 dc.w ReadLn-Entry_pt
 dc.w WriteLn-Entry_pt
 dc.w GetStat-Entry_pt
 dc.w SetStat-Entry_pt
 dc.w Close-Entry_pt
* Individual Routines Start Here

Figure 3-3: Beginning Of A Sample File Manager Module

OS-9 Input/Output System File Manager Organization

OS-9 Technical Manual 3-11

File Manager I/O Responsibilities

Name Description
Open Opens a file on a particular device. This typically involves allocating any buffers required,

initializing path descriptor variables, and parsing the path name. If the file manager
controls multi-file devices (RBF, PIPEMAN), directory searching is performed to find the
specified file.

Create Performs the same function as Open. If the file manager controls multi-file devices (RBF,
PIPEMAN), a new file is created.

Makdir Creates a directory file on multi-file devices. Makdir is neither preceded by a Create nor
followed by a Close. File managers that are incapable of supporting directories return with
the carry bit set and an appropriate error code in register d1.w.

Chgdir On multi-file devices, ChgDir searches for a directory file. If the directory is found, the
address of the directory is saved in the caller’s process descriptor at P$DIO. The kernel
allocates a path descriptor so that the ChgDir function may save information about the
directory file for later searching.

Open and Create begin searching in this directory when the caller’s pathlist does not begin
with a slash (/) character. File managers that do not support directories return with the carry
bit set and an appropriate error code in register d1.w.

Delete Multi-file device managers usually do a directory search that is similar to Open and, once
found, remove the file name from the directory. Any media that was in use by the file is
returned to unused status.

File managers that do not support multi-file devices return an E_UNKSVC error.

Seek File managers that support random access devices use Seek to position file pointers of the
already open path to the specified byte. Typically, this is a logical movement and does not
affect the physical device. No error is produced at the time of the Seek, if the position is
beyond the current end of file.

File managers that do not support random access usually do nothing, but do not return an
E_UNKSVC error.

File Manager Organization OS-9 Input/Output System

3-12 OS-9 Technical Manual

Name Description

Read Read returns the number of bytes requested to the user’s data buffer. If there is no data
available, an EOF error is returned. Read must be capable of copying pure binary data. It
generally does not perform editing on data. Usually, the file manager calls the device driver
to actually read the data into a buffer. It then copies data from the buffer into the user’s
data area. This method helps keep file managers device independent.

Write The Write request, like Read, must be capable of recording pure binary data without alter-
ation. Usually, the Read and Write routines are nearly identical. The most notable differ-
ence is that Write uses the device driver’s output routine instead of the input routine. Writ-
ing past the end of file on a device expands the file with new data.

RBF and similar random access devices that use fixed-length records (sectors) must often
pre-read a sector before writing it unless the entire sector is being written.

Readln ReadLn differs from Read in two respects. First, ReadLn is expected to terminate when
the first end-of-line character (carriage return) is encountered. Second, ReadLn performs
any input editing that is appropriate for the device.

Specifically, the SCF File Manager performs editing that involves handling backspace, line
deletion, echo, etc.

Writeln Writeln is the counterpart of Readln. It calls the device driver to transfer data up to and
including the first (if any) carriage return encountered. Appropriate output editing also is
performed. After a carriage return, for example, SCF usually outputs a line feed character
and nulls (if appropriate).

Getstat The Getstat (Get Status) system call is a wild card call designed to provide the status of
various features of a device (or file manager) that are not generally device independent.

The file manager may perform some specific function such as obtaining the size of a file.
Status calls that are unknown by the file manager are passed to the driver to provide a fur-
ther means of device independence.

Name Description

Setstat Setstat (Set Status) is the same as the Getstat function except that it is generally used to
set the status of various features of a device (or file manager).

The file manager may perform some specific function such as setting the size of a file to a
given value. Status calls that are unknown by the file manager are passed to the driver to
provide a further means of device independence. For example, a SetStat call to format a
disk track may behave differently on different types of disk controllers.

OS-9 Input/Output System File Manager Organization

OS-9 Technical Manual 3-13

Close Close ensures that any output to a device is completed (writing out the last buffer if nec-
essary), and releases any buffer space allocated when the path was opened. It may do spe-
cific end-of-file processing if necessary, such as writing end-of-file records on tapes.

I/O Device Driver Modules OS-9 Input/Output System

3-14 OS-9 Technical Manual

Device Driver Modules

Device driver modules perform basic low-level physical input/output functions. For example, a disk driver
module’s basic functions are to read or write a physical sector. The driver is not concerned about files,
directories, etc., which are handled at a higher level by the OS-9 file manager. Because device driver
modules are re-entrant, one copy of the module can simultaneously support multiple devices that use
identical I/O controller hardware.

This section describes the function and general design of OS-9 device driver modules to aid programmers
in modifying existing drivers or writing new ones. To present this information in an understandable
manner, only basic drivers for character-oriented (SCF-type) and disk-oriented (RBF-type) devices are
discussed. We recommend that you study this section in conjunction with the individual device-specific
sections and sample device driver source listings included in the OS-9 Technical I/O Manual.

Basic Functional Requirements of Drivers

If written properly, a single physical driver module can handle multiple identical hardware interfaces. The
specific information for each physical interface (port address, initialization constants, etc.) is provided in
the device descriptor module.

The name by which the device is known to the system is the name of the device descriptor module. OS-9
copies the initialization data of the device descriptor to the path descriptor data structure for easy access
by the drivers.

A device driver is actually a package of seven subroutines that are called by a file manager in system state.
Their functions are:

• Initialize the device controller hardware and related driver variables as required.

• Read a standard physical unit (a character or sector, depending on the device type).

• Write a standard physical unit (a character or sector, depending on the device type).

• Return a specified device status.

• Set a specified device status.

• De-initialize the device. It is assumed that the device will not be used again unless re-
initialized.

• Process an error exception generated during driver execution.

The interrupt service subroutine is also part of the device driver, although it is not called by the file
manager, but by the kernel’s interrupt routine. It communicates with the driver’s main section through the
static storage and certain system calls.

OS-9 Input/Output System Driver Module Format

OS-9 Technical Manual 3-15

Driver Module Format

All drivers must conform to the standard OS-9 memory module format. The module type code is Drivr.
Drivers should have the system-state bit set in the attribute byte of the module header. Currently OS-9
does not make use of this, but future revisions will require all device drivers to be system state modules.
A sample assembly language header is shown in Figure 3-4.

The execution offset in the module header (M$Exec) gives the address of an offset table, which specifies
the starting address of each of the seven driver subroutines relative to the base address of the module.

The static storage size (M$Mem) specifies the amount of local storage required by the driver. This is the
sum of the global I/O storage, the storage required by the file manager (V_xxx variables), and any
variables and tables declared in the driver.

The driver subroutines are called by the associated file manager through the offset table. The driver
routines are always executed in system state. Regardless of the device type, the standard parameters listed
below are passed to the driver in registers. Other parameters that depend on the device type and subroutine
called may also be passed. These are described in individual chapters concerning file managers in the OS-
9 Technical I/O Manual.

INITIALIZE and TERMINATE
(a1) address of the device descriptor module
(a2) address of the driver’s static variable storage
(a4) address of the process descriptor requesting the I/O function
(a6) address of the system global variable storage area

READ, WRITE, GETSTAT and SETSTAT
(a1) address of the path descriptor
(a2) address of the driver’s static variable storage
(a4) address of the process descriptor requesting the I/O function
(a5) pointer to the calling process’ register stack
(a6) address of the system global variable storage area

ERROR
This entry point should be defined as the offset to error exception handling code or zero if no
handler is available. This entry point is currently not used by the kernel. However, it will be
accessed in future revisions.

Each subroutine is terminated by a RTS instruction. Error status is returned using the CCR carry bit with
an error code returned in register d1.w.

Interrupts and DMA OS-9 Input/Output System

3-16 OS-9 Technical Manual

Interrupts and DMA

Because OS-9 is a multi-tasking operating system, you obtain optimum system performance when all I/O
devices are set up for interrupt-driven operation.

For character-oriented devices, set up the controller to generate an interrupt upon the receipt of an
incoming character and at the completion of transmission of an out-going character. Both the input data
and the output data should be buffered in the driver.

In the case of block-type devices (for example, RBF, SBF), set up the controller to generate an interrupt
upon the completion of a block read or write operation. It is not necessary for the driver to buffer data
because the driver is passed the address of a complete buffer. Direct Memory Access (DMA) transfers, if
available, significantly improve data transfer speed.

Usually, the Init routine adds the relevant device interrupt service routine to the OS-9 interrupt polling
system using the F$IRQ system call. The controller interrupts are enabled and disabled by the READ and
WRITE routines as required. TERM disables the physical interrupts and then takes the device off the
interrupt polling table.

The assignment of device intercept priority levels can have a significant impact on system operation.
Generally, the smarter the device, the lower you can set its interrupt level. For example, a disk controller
that buffers sectors can wait longer for service than a single-character buffered serial port. Assign the
Clock tick device the highest possible level to keep system time-keeping interference at a minimum.

* Module Header

Type_Lang equ (Drivr<<8)+Objct
Attr_Revs equ ((ReEnt+Supstat)<<8)+0

psect Acia,Typ_Lang,Attr_Rev,Edition,0,AciaEnt

* Entry Point Offset Table
AciaEnt dc.w Init Initialization routine offset

dc.w Read Read routine offset
dc.w Write Write routine offset
dc.w GetStat Get dev status routine offset
dc.w SetStat Set dev status routine offset
dc.w TrmNat Terminate dev routine offset
dc.w Error Error handler routine offset (0=none)

Figure 3-4: Sample Driver Module Header Format

OS-9 Input/Output System Interrupts and DMA

OS-9 Technical Manual 3-17

The following table shows how you can assign interrupt levels:

level 6: clock ticker
5: "dumb" (non-buffering) disk controller
4: terminal port
3: printer port
2: "smart" (sector-buffering) disk controller

End of Chapter 3

NOTES OS-9 Input/Output System

3-18 OS-9 Technical Manual

NOTES

OS-9 Technical Manual 4 - 1

This chapter describes the five forms of interprocess communication that OS-9 supports:

• Signals

• Alarms

• Events

• Pipes

• Data modules

Signals synchronize concurrent processes. Alarms send signals or execute subroutines at specified times.
Events synchronize concurrent processes’ access of shared resources. Pipes transfer data among
concurrent processes. Data modules transfer or share data among concurrent processes.

Interprocess
Communications

Signals Interprocess Communications

4 - 2 OS-9 Technical Manual

Signals
In interprocess communications, a signal is an intentional disturbance in a system. OS-9 signals are
designed to synchronize concurrent processes, but you can also use them to transfer small amounts of data.
Because they are usually processed immediately, signals provide real-time communication between
processes.

Signals are also referred to as software interrupts because a process receives a signal similar to a CPU
receiving an interrupt. Signals enable a process to send a “numbered interrupt” to another process. If an
active process receives a signal, the intercept routine executes immediately (if installed) and the process
resumes execution where it left off. If a sleeping or waiting process receives a signal, the process moves
to the active queue, the signal routine executes, and the process resumes execution immediately after the
call that removed it from the active queue.

NOTE: A process which receives a signal for which it does not have an intercept routine is killed. This
applies to all signals greater than 1 (wake-up signal).

Each signal has two parts: the process ID of the destination and a signal code. OS-9 supports the following
signal codes in user-state:

Signal Description

0 Unconditional system abort signal. The super-user can send the kill signal to
any process, but non-super-users can send this signal only to processes with
their group and user IDs. This signal terminates the receiving process,
regardless of the state of its signal mask, and is not intercepted by the intercept
handler.

1 Wake-up signal. Sleeping/waiting processes which receive this signal are
awakened, but the signal is not intercepted by the intercept handler. Active
processes ignore this signal. A program can receive a wake-up signal safely
without an intercept handler. The wake-up signal is not queued if the process’s
signals are masked.

2 Keyboard abort signal. Typing control-E sends this signal to the last process to
do I/O on the terminal. Usually, the intercept routine performs exit(2) upon
receiving a keyboard abort signal.

3 Keyboard interrupt signal. Typing control-C sends this signal to the last
process to do I/O on the terminal. Usually, the intercept routine performs
exit(3) upon receiving a keyboard interrupt signal.

Interprocess Communications Signals

OS-9 Technical Manual 4 - 3

Signal Description

4 Hang-up signal. SCF sends this signal when it discovers that the modem
connection is lost.

5-31 These signal numbers are reserved for future use by Microware. Signals in this
range are considered deadly to the I/O system.

32-255 These signal numbers are reserved for future use by Microware.

256-65535 User-defined signals. These signal numbers are available for use in user
applications.

You could design a signal routine to interpret the signal code word as data. For example, you could send
various signal codes to indicate different stages in a process’s execution. This is extremely effective
because signals are processed immediately upon receipt.

The following system calls enable processes to communicate through signals:

Name Description

F$Send Sends a signal to a process.

F$Icpt Installs a signal intercept routine.

F$Sleep Deactivates the calling process until the specified number of ticks has passed or
a signal is received.

F$SigMask Enables/disables signals from reaching the calling process.

For specific information about these system calls, refer to OS-9 System Calls. The Microware C
Compiler supports a corresponding C call for each of these calls, as well.

NOTE: Appendix A contains a program which demonstrates how you may use signals.

Alarms Interprocess Communications

4 - 4 OS-9 Technical Manual

Alarms

User-state Alarms

The user-state F$Alarm request allows a program to arrange to send a signal to itself. The signal may be
sent at a specific time of day or after a specified interval passes. The program may also request that the
signal be sent periodically, each time the specified interval passes.

OS-9 supports the following user-state alarm functions:

A$Delete Remove a pending alarm request
A$Set Send a signal after specified time interval
A$Cycle Send a signal at specified time intervals
A$AtDate Send a signal at Gregorian date/time
A$AtJul Send a signal at Julian date/time

Cyclic Alarms

A cyclic alarm is most useful for providing a time base within a program. This greatly simplifies the
synchronization of certain time-dependent tasks. For example, a real-time game or simulation might allow
15 seconds for each move. You could use a cyclic alarm signal to determine when to update the game
board.

The advantages of using cyclic alarms are more apparent when multiple time bases are required. For
example, suppose that you were using an OS-9 process to update the real-time display of a car’s digital
dashboard. The process might need to:

• Update a digital clock display every second

• Update the car’s speed display five times per second

• Update the oil temperature and pressure display twice per second

• Update the inside/outside temperature every two seconds

• Calculate miles to empty every five seconds

You could give each function the process must monitor a cyclic alarm, whose period is the desired refresh
rate, and whose signal code identifies the particular display function. The signal handling routine might
read an appropriate sensor and directly update the dashboard display. The system takes care of all of the
timing details.

Interprocess Communications Alarms

OS-9 Technical Manual 4 - 5

Time of Day Alarms

You can set an alarm to provide a signal at a specific time and date. This provides a convenient mechanism
for implementing a “cron” type of utility, which executes programs at specific days and times. Another
use is to generate a traditional alarm clock buzzer for personal reminders.

A key feature of this type of alarm is that it is sensitive to changes made to the system time. For example,
assume the current time is 4:00 and you want a program to send itself a signal at 5:00. The program could
either set an alarm to occur at 5:00 or set the alarm to go off in one hour. Assume the system clock is 30
minutes slow, and the system administrator corrects it. In the first case, the program wakes up at 5:00; in
the second case, the program wakes up at 5:30.

Relative Time Alarms

You can use a relative time alarm to set a time limit for a specific action. Relative time alarms are
frequently used to cause an I$Read request to abort if it is not satisfied within a maximum time. Do this
by sending a keyboard abort signal at the maximum allowable time, and then issuing the I$Read request.
If the alarm arrives before the input is received, the I$Read request returns with an error. Otherwise, the
alarm should be cancelled. The example program deton.c in Appendix A demonstrates this technique.

Alarms Interprocess Communications

4 - 6 OS-9 Technical Manual

System-state Alarms

A system-state counterpart exists for each of the user-state alarm functions. However, the system-state
version is considerably more powerful than its user-state equivalent. When a user-state alarm expires, the
kernel sends a signal to the requesting process. When a system-state alarm expires, the kernel executes
the system-state subroutine specified by the requesting process at a very high priority.

OS-9 supports the following system-state alarm functions:

A$Delete Remove a pending alarm request
A$Set Execute a subroutine after a specified time interval
A$Cycle Execute a subroutine at specified time intervals
A$AtDate Execute a subroutine at a Gregorian date/time
A$AtJul Execute a subroutine at Julian date/time

NOTE: The alarm is executed by the kernel’s process, not by the original requester’s process. During
execution, the user number of the system process temporarily changes to the original requester. The stack
pointer (a7) passed to the alarm subroutine is within the system process descriptor, and contains about 1K
of free space.

The kernel automatically deletes a process’s pending alarm requests when the process terminates. This
may be undesirable in some cases. For example, assume an alarm is scheduled to shut off a disk drive
motor if the disk has not been accessed for 30 seconds. The alarm request is made in the disk device driver
on behalf of the I/O process. This alarm does not work if it is removed when the process exits.

One way to arrange for a persistent alarm is to execute the F$Alarm request on behalf of the system
process, rather than the current I/O process. Do this by moving the system variable D_SysPrc to D_Proc,
executing the alarm request, and restoring D_Proc. For example:

move.l D_Proc(a6),-(a7) save current process pointer
movea.l D_SysPrc(a6),D_Proc(a6) impersonate system process
OS9 F$Alarm execute the alarm request
/* (error handling omitted) */
move.l (a7)+,D_Proc(a6) restore current process

WARNING: If you use this technique, you must ensure that the module containing the alarm subroutine
remains in memory until after the alarm has expired.

An alarm subroutine must not perform any function that could result in any kind of sleeping or queuing.
This includes F$Sleep, F$Wait, F$Load, F$Event (wait), F$IOQU, and F$Fork (if it might require
F$Load). Other than these functions, the alarm subroutine may perform any task.

One possible use of the system-state alarm function might be to poll a positioning device, such as a mouse
or light pen, every few system ticks. Be conservative when scheduling alarms, and make the cycle as large
as reasonably possible. Otherwise, a great deal of the system’s available CPU time could be wasted.

Interprocess Communications Alarms

OS-9 Technical Manual 4 - 7

NOTE: Refer to Appendix A for a program demonstrating how you can use alarms.

Events Interprocess Communications

4 - 8 OS-9 Technical Manual

Events
OS-9 events are multiple-value semaphores. They synchronize concurrent processes which are accessing
shared resources such as files, data modules, and CPU time. For example, if two processes need to
communicate with each other through a common data module, you may need to synchronize the processes
so that only one updates the data module at a time.

Events do not transmit any information, although processes using the event system may obtain information
about the event, and use it as something other than a signaling mechanism.

An OS-9 event is a 32-byte system global variable maintained by the system. Each event includes the
following fields:

Event ID This number and the event’s array position create a unique ID.

Event name This name must be unique and cannot exceed 11 characters.

Event value This four-byte integer value has a range of 2 billion.

Wait increment This value is added to the event value when a process waits for the event. It
is set when the event is created and does not change.

Signal increment This value is added to the event value when the event is signaled. It is set
when the event is created and does not change.

Link Count This is the event use count.

Next event This is a pointer to the next process in the event queue. An event queue is
circular and includes all processes waiting for the event. Each time the
event is signaled, this queue is searched.

Previous event This is a pointer to the previous process in the event queue.

The OS-9 event system provides facilities to create and delete events, to permit processes to link/unlink
events and obtain event information, to suspend operation until an event occurs, and for various means of
signaling.

You may use events directly as service requests in assembly language programs. The Microware C
compiler supports a corresponding C call for each event system call.

Interprocess Communications Events

OS-9 Technical Manual 4 - 9

The Wait and Signal Operations

Wait and Signal are the two most common operations performed on events. The Wait operation suspends
the process until the event is within a specified range, adds the wait increment to the current event value,
and returns control to the process just after the wait operation was called. The Signal operation adds the
signal increment to the current event value, checks for other processes to awaken, and returns control to
the process. These operations allow a process to suspend itself while waiting for an event and to reactivate
when another process signals that the event has occurred.

For example, you could use events to synchronize the use of a printer. Initialize the event value to one,
the number of printers on the system. Set the signal increment to one, and the wait increment to minus one
(-1). When a process wants to use the printer, it checks to see if one is available, that is, it waits for the
event value to be in the range (1, number of printers). In this example, the number of printers is one.

An event value within the specified range indicates that the printer is available; the printer is immediately
marked as busy (that is, the event value increases by -1, the wait increment) and the process is allowed to
use it. An event value out of range indicates that the printer is busy and the process is put to sleep on the
event queue.

When a process finishes with the printer, the process signals the event, that is, it applies the signal
increment to the event value. Then, the event queue is searched for a process whose event value range
includes the current event value. If such a process is found, the process activates, applies the wait
increment to the event value, and uses the printer.

To coordinate sharing a non-sharable resource, user programs must:

¿ Wait for the resource to become available.

¡ Mark the resource as busy.

¬ Use the resource.

Ð Signal that the resource is no longer busy.

The first two steps in this process must be indivisible, because of time-slicing. Otherwise, two processes
could check an event and find it free. Then, both processes would try to mark it busy. This corresponds
to two processes using a printer at the same time. The F$Event service request prevents this from
happening by performing both steps in the Wait operation.

NOTE: Appendix A includes a program which demonstrates how you may use events.

F$Event: Interprocess Communications

4 - 10 OS-9 Technical Manual

The F$Event System Call

The F$Event system call provides the mechanism to create named events for this type of application. The
name “event” was chosen instead of “semaphore” because F$Event provides the flexibility to synchronize
processes in a variety of ways not usually found in semaphore primitives. OS-9’s event routines are very
efficient, and suitable for use in real-time control applications.

Event variables require several maintenance functions as well as the Signal and Wait operations. To keep
the number of system calls required to a minimum, all event operations are accessible through the
F$Event system call.

Currently, OS-9 has functions to allow you to create, delete, link, unlink, and examine events (listed
below). It also provides several variations of the Signal and Wait operations.

The F$Event description in OS-9 System Calls discusses specific parameters and functions of each
event operation. The system definition file funcs.a defines Ev$ function names. Resolve actual values
for the function codes by linking with the relocatable library sys.l or usr.l.

OS-9 supports the following event functions:

Ev$Link Link to an existing event by name.
Ev$UnLnk Unlink an event.
Ev$Creat Create a new event.
Ev$Delet Delete an existing event.
Ev$Wait Wait for an event to occur.
Ev$WaitR Wait for a relative to occur.
Ev$Read Read an event value without waiting.
Ev$Info Return event information.
Ev$Pulse Signal an event occurrence. Temporarily changes the event value.
Ev$Signl Signal an event occurrence. Changes the event value.
Ev$Set Set an event variable and signal an event occurrence.
Ev$SetR Set a relative event variable and signal an event occurrence.

Interprocess Communications Pipes

OS-9 Technical Manual 4 - 11

Pipes
An OS-9 pipe is a first-in first-out (FIFO) buffer which enables concurrently executing processes to
communicate data: the output of one process (the writer) is read as input by a second process (the reader).
Communication through pipes eliminates the need for an intermediate file to hold data.

Pipeman is the OS-9 file manager that supports interprocess communication through pipes. Pipeman is
a re-entrant subroutine package that is called for I/O service requests to a device named /pipe. Although
no physical device is used in pipe communications, a driver must be specified in the pipe descriptor
module. The null driver (a driver that does nothing) is usually used, but only gets called by pipeman for
GetStat/SetStat calls.

A pipe may contain up to 90 bytes, unless a different buffer size was declared. Typically, a pipe is used as
a one-way data path between two processes: one writing and one reading. The reader waits for the data to
become available and the writer waits for the buffer to empty. However, any number of processes can
access the same pipe simultaneously; pipeman coordinates these processes. A process can even arrange
for a single pipe to have data sent to itself. You could use this to simplify type conversions by printing
data into the pipe and reading it back using a different format.

Data transfer through pipes is extremely efficient and flexible. Data does not have to be read out of the
pipe in the same size sections in which it was written.

You can use pipes much like signals to coordinate processes, but with these advantages:

• Longer messages (more than 16 bits)

• Queued messages

• Determination of pending messages

• Easy process-independent coordination (using named pipes)

Named and Unnamed Pipes

OS-9 supports both named and unnamed (anonymous) pipes. The shell uses unnamed pipes extensively to
construct program “pipelines,” but user programs may use them as well. Unnamed pipes may be opened
only once. Independent processes may communicate through them only if the pipeline was constructed
by a common parent to the processes. Do this by making each process inherit the pipe path as one of its
standard I/O paths.

Named and unnamed pipes function nearly identically. The main difference is that several independent
processes may open a named pipe, which simplifies pipeline construction. The sections that follow note
other specific differences.

Operations on Pipes Interprocess Communications

4 - 12 OS-9 Technical Manual

Operations on Pipes

Creating Pipes

The I$Create system call is used with the pipe file manager to create new named or unnamed pipe files.

You may create pipes using the pathlist /pipe (for unnamed pipes, pipe is the name of the pipe device
descriptor) or /pipe/<name> (<name> is the logical file name being created). If a pipe file with the same
name already exists, an error (E$CEF) is returned. Unnamed pipes cannot return this error.

All processes connected to a particular pipe share the same physical path descriptor. Consequently, the
path is automatically set to update mode regardless of the mode specified at creation. You may specify
access permissions; they are handled similarly to RBF.

The size of the default FIFO buffer associated with a pipe is specified in the pipe device descriptor. You
may override this when creating a pipe by setting the initial file size bit of the mode byte and passing the
desired file size in register d2.

If no default or overriding size is specified, a 90-byte FIFO buffer inside the path descriptor is used.

Opening Pipes

When accessing unnamed pipes, I$Open, like I$Create, opens a new anonymous pipe file. When
accessing named pipes, I$Open searches for the specified name through a linked list of named pipes
associated with a particular pipe device. If I$Open finds the pipe, the path number returned refers to the
same physical path allocated when the pipe was created. Internally, this is similar to the I$Dup system
call.

Opening an unnamed pipe is simple, but sharing the pipe with another process is more complex. If a new
path to /pipe is opened for the second process, the new path is independent of the old one.

The only way for more than one process to share the same unnamed pipe is through the inheritance of the
standard I/O paths through the F$Fork call. As an example, the outline on the following page describes
a method the shell might use to construct a pipeline for the command dir -u ! qsort. It is assumed that
paths 0,1 are already open.

Interprocess Communications Read/ReadLn

OS-9 Technical Manual 4 - 13

StdInp = I$Dup(0) save the shell’s standard input
StdOut = I$Dup(1) save shell’s standard output

I$Close(1) close standard output
I$Open("/pipe") open the pipe (as path 1)
I$Fork("dir","-u") fork "dir" with pipe as standard output
I$Close(0) free path 0
I$Dup(1) copy the pipe to path 0
I$Close(1) make path available
I$Dup(StdOut) restore original standard out
I$Fork("qsort") fork qsort with pipe as standard input
I$Close(0) get rid of the pipe
I$Dup(StdInp) restore standard input
I$Close (StdInp) close temporary path
I$Close (StdOut) close temporary path

The main advantage of using named pipes is that several processes may communicate through the same
named pipe without having to inherit it from a common parent process. For example, you can approximate
the above steps with the following command:

dir -u >/pipe/temp & qsort </pipe/temp

NOTE: The OS-9 shell always constructs its pipelines using the unnamed /pipe descriptor.

Read/ReadLn

The I$Read and I$ReadLn system calls return the next bytes in the pipe buffer. If there is not enough
data ready to satisfy the request, the process reading the pipe is put to sleep until more data is available.

The end-of-file is recognized when the pipe is empty and the number of processes waiting to read the pipe
is equal to the number of users on the pipe. If any data was read before end-of-file was reached, an end-
of-file error is not returned. However, the byte count returned is the number of bytes actually transferred,
which is less than the number requested.

NOTE: The Read and Write system calls are faster than ReadLn and WritLn because pipeman does
not have to check for carriage returns and the loops moving data are tighter.

Write/WritLn

The I$Write and I$WritLn system calls work in almost the same way as I$Read and I$ReadLn. A pipe
error (E$Write) is returned when all the processes with a full unnamed pipe open are attempting to write
to the pipe. Each process attempting to write to the pipe receives the error, and the pipe remains full.

When named pipes are being used, pipeman never returns the E$Write error. If a named pipe gets full
before a process that receives data from the pipe opens it, the process writing to the pipe is put to sleep
until a process reads the pipe.

Close Interprocess Communications

4 - 14 OS-9 Technical Manual

Close

When a pipe path is closed, its path count decreases. If no paths are left open on an unnamed pipe, its
memory returns to the system. With named pipes, its memory returns only if the pipe is empty. A non-
empty pipe (with no open paths) is artificially kept open, waiting for another process to open and read from
the pipe. This permits you to use pipes as a type of a temporary, self-destructing RAM disk file.

Getstat/Setstat

Pipeman supports a wide range of status codes, to allow insertion of pipe between processes where a RBF
or SCF device would normally be used. For this reason, most RBF and SCF status codes are implemented
to do something without returning an error. The actual function may differ slightly from the other file
managers, but it is usually compatible.

GetStat Status Codes

Name Description

SS_Opt Reads the 128 byte option section of the path descriptor. You can use it to obtain the path
type, data buffer size, and name of pipe.

SS_Ready Tests whether data is ready. Returns the number of bytes in the buffer.

SS_Size Returns the size of the pipe buffer.

SS_EOF Tests for end-of-file.

SS_FD Returns a pseudo-file descriptor image.

Other codes are passed to the device driver.

Interprocess Communications Pipe Directories

OS-9 Technical Manual 4 - 15

SetStat Status Codes

Name Description

SS_Attr Changes the pipe file’s attributes.

SS_Break Forces disconnection.

SS_FD Does nothing, but returns without error.

SS_Opt Does nothing, but returns without error.

SS_Relea Releases the device from the SS_SSig processing before data becomes available.

SS_Size Resets the pipe buffer if the specified size is zero. Otherwise, it has no effect, but returns
without error.

SS_SSig Sends a signal when the data becomes available.

Other codes are passed to the device driver.

The I$MakDir and I$ChgDir service requests are illegal service routines on pipes. They return
E$UnkSvc (unknown service request).

Pipe Directories

Opening an unnamed pipe in the Dir mode allows it to be opened for reading. In this case, pipeman
allocates a pipe buffer and pre-initializes it to contain the names of all open named pipes on the specified
device. Each name is null-padded to make a 32-byte record. This allows utilities, that normally read an
RBF directory file sequentially, to work with pipes as well.

NOTE: Remember that pipeman is not a true directory device, so commands like chd and makdir do
not work with /pipe.

The head of a linked list of named pipes is in the static storage of the pipe device driver (usually the null
driver). If there are several pipe descriptors with different default pipe buffer sizes on a system, the I/O
system notices that the same file manager, device driver, and port address (usually zero) are being used.
It will not allocate new static storage for each pipe device and all named pipes will be on the same list.

For example, if two pipe descriptors exist, a directory of either device reveals all the named pipes for both
devices. If each pipe descriptor has a unique port address (0,1,...), the I/O system allocates different static
storage for each pipe device. This produces more predictable results.

Data Modules Interprocess Communications

4 - 16 OS-9 Technical Manual

Data Modules
OS-9 data modules enable multiple processes to share a data area and to transfer data among themselves.
A data module must have a valid CRC and module header to be loaded. A data module can be non-re-
entrant; it can modify itself and be modified by several processes.

OS-9 does not have restrictions as to the content, organization, or usage of the data area in a data module.
These considerations are determined by the processes using the data module.

OS-9 does not synchronize processes using a data module. Consequently, thoughtful programming,
usually involving events or signals, is required to enable several processes to update a shared data module
simultaneously.

Creating Data Modules

The F$DatMod system call creates a data module with a specified set of attributes, data area size, and
module name. The data area is cleared automatically. The data module is created with a valid CRC and
entered into the system module directory.

NOTE: It is essential that the data module’s header and name string not be modified to prevent the module
from becoming unknown to the system.

The Microware C compiler provides several C calls to create and use data modules directly. These include
the _mkdata_module() call, which is specific to data modules, and the modlink(), modload(),
munlink(), and munload() facilities which apply to all OS-9 modules. For more information on these
calls, refer to the standard library sections of the OS-9 C Compiler User’s Manual.

The Link Count

Like all OS-9 modules, data modules have a link count associated with them. The link count is a counter
of how many processes are currently linked to the module. Generally, the module is taken out of memory
when this count reaches zero. If you want the module to remain in memory when the link count is zero,
when you create the module make it “sticky” by setting the sticky bit in its attribute byte.

Saving to Disk

If a data module is saved to disk, you can use the dump utility to examine the module’s format and
contents. You can save a data module to disk using the save utility or by writing the module image into
a file. If the data module was modified since its creation, the saved module’s CRC is bad and it is
impossible to re-load it into memory. To re-load the module, use the F$SetCRC system call or _setcrc()
C library call before writing it to disk. Or, use the fixmod utility after the module has been written to disk.

End of Chapter 4

Interprocess Communications NOTES

OS-9 Technical Manual 4 - 17

NOTES

NOTES Interprocess Communications

4 - 18 OS-9 Technical Manual

OS-9 Technical Manual 5 - 1

Trap Handlers

The 68000 family of microprocessors has sixteen software trap exception vectors. The first (trap 0) is
reserved for making OS-9 system calls. You may use the remaining fifteen as service requests to user-
defined “user trap handlers.”

Microware provides standard trap handlers for I/O conversions in the C language, floating point math, and
trigonometric functions. The following traps are reserved:

trap 13 CIO is automatically called for any C program.

trap 15 Math is called for floating point math, extended integer math and/or type conversion.
It is also used for programs using transcendental and/or extended mathematical func-
tions.

For further information about the math module, refer to Chapter 6.

A user trap handler is an OS-9 module that usually contains a set of related subroutines. Any user
program may dynamically link to the user trap handler and call it at execution time. NOTE: While trap
handlers reduce the size of the execution program, they do not do anything that could not be done by
linking the program with appropriate library routines at compilation time. In fact, programs that call trap
handlers execute slightly slower than linked programs that perform the same function.

Trap handlers must be written in a language that compiles to machine code (such as assembly language or
C). They should be suitably generic for use by a number of programs.

User Trap
Handlers

Trap Handlers User Trap Handlers

5 - 2 OS-9 Technical Manual

Trap handlers are similar to normal OS-9 program modules, except that trap handlers have three execution
entry points: a trap execution entry point, trap initialization entry point, and trap termination entry point.

Trap handler modules are of module type TrapLib and module language Objct.

The trap module routines usually execute as though they were called with a jsr instruction, except for
minor stack differences. Any system calls or other operations that the calling module could perform are
usable in the trap module.

It is possible to write a trap handler module that runs in system state. This is rarely advisable, but
sometimes necessary. For a discussion of the uses of system state, refer to the System Call Overview in
Chapter 2.

User Trap Handlers Installing and Executing Trap Handlers

OS-9 Technical Manual 5 - 3

Installing and Executing Trap Handlers

A user program installs a trap handler by executing the F$TLink system request. When this is done, the
OS-9 kernel links to the trap module, allocates and initializes its static storage (if any), and executes the
trap module’s initialization routine.

Typically, the initialization routine has very little to do. You could use it to open files, link to additional
trap or data modules, or perform other startup activities. It is called only once per trap handler in any given
program.

A trap module that is used by a program is usually installed as part of the program’s initialization code.
At initialization, a particular trap number (1-15) is specified that refers to the trap module. The program
invokes functions in the trap module by using the 68000 trap instruction corresponding to the trap number
specified. This is followed by a function word that is passed to the trap handler itself. The arrangement
is very similar to making a normal OS-9 system call.

The OS-9 relocatable macro assembler has special mnemonics to make trap calls more apparent. These
are OS9 for trap 0, and tcall for the other user traps. They work like built-in macros, generating code as
illustrated in the following section.

 OS9 and tcall: Equivalent Assembly Language Syntax

Mnemonic Code Generated
OS9 F$TLink trap 0

dc.w F$TLink

tcall T$Math,T$DMul trap T$Math
dc.w T$DMul

From user programs, it is possible to delay installing a trap module until the first time it is actually needed.
If a trap module has not been installed for a particular trap when the first tcall is made, OS-9 checks the
program’s exception entry offset (M$Excpt in the module header). The program aborts if this offset is
zero. Otherwise, OS-9 passes control to the exception routine. At this point, the trap handler can be
installed, and the first tcall reissued. The second example in this chapter shows how to do this.

Calling a Trap Handler User Trap Handlers

5 - 4 OS-9 Technical Manual

Calling a Trap Handler

The actual details of building and using a trap handler are best explained by means of a simple complete
example.

Example One: The following program (TrapTst) uses trap vector 5. It installs the trap handler and then
calls it twice.

 nam TrapTst1
 ttl example one - link and call trap handler
 use /dd/defs/oskdefs.d
Edition equ 1
Typ_Lang equ (Prgrm<<8)+Objct
Attr_Rev equ (ReEnt<<8)+0
 psect traptst,Typ_Lang,Attr_Rev,Edition,1024,Test

TrapNum equ 5 trap number to use
TrapName dc.b "trap",0 name of trap handler

* Main program entry point

Test: moveq #TrapNum,d0 trap number to assign
 moveq #0,d1 no optional memory override
 lea TrapName(pc),a0 ptr to name of trap handler
 os9 F$TLink install trap handler
 bcs.s Test99 abort if error
 tcall TrapNum,0 call trap function #0
 bcs.s Test99 abort if error
 tcall TrapNum,1 call trap function #1
 bcs.s Test99 abort if error
 moveq #0,d1 exit without error
Test99 os9 F$Exit exit
 ends

Example Two: The following example shows how you could modify the preceding program to install the
trap handler in an exception routine when the first tcall is executed. You might do this for a trap handler
that may not be used at all by a program, depending on circumstances.

This example does not initialize the trap handler before using it, but is otherwise identical to Example One.
It provides a LinkTrap subroutine to automatically install the trap handler when it is first used. Refer to
the trace of Example Two later in this chapter for more information.

 nam TrapTst2
 ttl example two - call trap handler
 use /dd/defs/oskdefs.d
Edition equ 1
Typ_Lang equ (Prgrm<<8)+Objct

User Trap Handlers Calling a Trap Handler

OS-9 Technical Manual 5 - 5

Attr_Rev equ (ReEnt<<8)+0
EXAMPLE TWO (continued):

 psect traptst,Typ_Lang,Attr_Rev,Edition,1024,Test,LinkTrap

TrapNum equ 5 trap number to use
TrapName dc.b "trap",0 name of trap handler

* Main program entry point

Test: tcall TrapNum,0 call trap function #0
 bcs.s Test99 abort if error
 tcall TrapNum,1 call trap function #1
 bcs.s Test99 abort if error
 moveq #0,d1 exit without error
Test99 os9 F$Exit exit

* Subroutine LinkTrap
* Installs trap handler and then executes first trap call.
* Note: Error checking is minimized to keep example simple.
*
* Passed: d0-d7 = caller’s registers
* a0-a5 = caller’s registers
* (a6) = trap handler static storage pointer
* (a7) = trap init/entry stack frame
*
* Returns: trap installed, backs up PC to execute "tcall" instruction
*
* The stack looks like this:
* .------------------------.
* +8 | caller’s return PC |
* >------------------------<
* +6 | vector # |
* >------------<
* +4 | func code |
* >------------------------<
* | caller’s a6 register |
* (a7)-> ------------------------

LinkTrap: addq.l #8,a7 discard excess stack info
 movem.l d0-d1/a0-a2,-(a7) save registers
 moveq #TrapNum,d0 trap number to assign
 moveq #0,d1 no optional memory override
 lea TrapName(pc),a0 ptr to name of trap handler
 os9 F$TLink install trap handler
 bcs.s Test99 abort if error
 movem.l (a7)+,d0-d1/a0-a2 retrieve registers
 subq.l #4,(a7) back up to tcall instruction

Calling a Trap Handler User Trap Handlers

5 - 6 OS-9 Technical Manual

 rts return to tcall instruction
 ends

User Trap Handlers An Example Trap Handler

OS-9 Technical Manual 5 - 7

An Example Trap Handler

The following makefile makes the example trap handler and test programs:

makefile - Used to make the example trap handler and test programs.

RDIR = RELS
TRAP = trap
TEST1 = traptst1
TEST2 = traptst2

Dependencies for making the entire trap example.

trap.example: $(TRAP) $(TEST1) $(TEST2)
 touch trap.example

Dependencies for making the trap handler.

$(TRAP): $(TRAP).r
 l68 -g $(RDIR)/$(TRAP).r -l=/dd/lib/sys.l -o=$(TRAP)

Dependencies for making the traptst1 test program.

$(TEST1): $(TEST1).r
 l68 -g $(RDIR)/$(TEST1).r -l=/dd/lib/sys.l -o=$(TEST1)

Dependencies for making the traptst2 test program.

$(TEST2): $(TEST2).r
 l68 -g $(RDIR)/$(TEST2).r -l=/dd/lib/sys.l -o=$(TEST2)

The trap handler itself is listed below. It is artificially simple to avoid confusion. Most trap handlers have
several functions, and generally begin with a dispatch routine based on the function code.

 nam Trap Handler
 ttl Example trap handler module
 use /dd/defs/oskdefs.d
Type set (TrapLib<<8)+Objct
Revs set ReEnt<<8
 psect traphand,Type,Revs,0,0,TrapEnt
 dc.l TrapInit initialization entry point
 dc.l TrapTerm termination entry point

* TrapInit: Trap handler initialization entry point.
*
* Passed: d0.w = User Trap number (1-15)
* d1.l = (optional) additional static storage
* d2-d7 = caller’s registers at the time of the trap

An Example Trap Handler User Trap Handlers

5 - 8 OS-9 Technical Manual

* (a0) = trap handler module name pointer
* (a1) = trap handler execution entry point
* (a2) = trap module pointer
EXAMPLE TRAP HANDLER (continued):

* a3-a5 = caller’s registers (parameters required by handler)
* (a6) = trap handler static storage pointer
* (a7) = trap init stack frame pointer
*
* Returns: (a0) = updated trap handler name pointer
* (a1) = trap handler execution entry point
* (a2) = trap module pointer
* cc = carry set, d1.w=error code if error
* Other values returned are dependent on the trap handler
*
* The stack looks like this:
* .-------------------------.
* +8 | caller’s return PC |
* >-------------------------<
* +4 | 0000 | 0000 |
* >------------|------------<
* | caller’s a6 register |
* (a7)-> -------------------------

TrapInit movem.l (a7),a6 restore user’s a6 register
 addq.l #8,a7 take other stuff off the stack
 rts return to caller

**
* TrapEnt: User trap handler entry point.
*
* Passed: d0-d7 = caller’s registers
* a0-a5 = caller’s registers
* (a6) = trap handler’s static storage pointer
* (a7) = trap entry stack frame pointer
*
* Returns: cc = carry set, d1.w=error code if error
* Other values returned are dependent on the trap handler
*
* The stack looks like this:
* .------------------------.
* +8 | caller’s return PC |
* >------------------------<
* +6 | vector # |
* >------------<
* +4 | func code |
* >------------------------<
* | caller’s a6 register |
* (a7)-> ------------------------

User Trap Handlers An Example Trap Handler

OS-9 Technical Manual 5 - 9

 org 0 stack offset definitions
S.d0 do.l 1 caller’s d0 reg
S.d1 do.l 1 caller’s d1 reg
S.a0 do.l 1 caller’s a0 reg
S.a6 do.l 1 caller’s a6 reg
S.func do.w 1 trap function code
S.vect do.w 1 vector number
EXAMPLE TRAP HANDLER (continued):

S.pc do.l 1 return pc

TrapEnt: movem.l d0-d1/a0,-(a7) save registers
 move.w S.func(a7),d0 get function code
 cmp.w #1,d0 is function in range?
 bhi.s FuncErr abort if not
 beq.s Trap10 branch if function code #1
 lea String1(pc),a0 get first string ptr
 bra.s Trap20 continue
Trap10 lea String2(pc),a0 get second string ptr
Trap20 moveq #1,d0 standard output path
 moveq #80,d1 maximum bytes to write
 os9 I$WritLn output the string
 bcs.s Abort abort if error
Trap90 movem.l (a7)+,d0-d1/a0/a6-a7 restore regs
 rts return to user

FuncErr move.w #1<<8+99,d2 abort (return error 001:099)
Abort move.w d1,S.d1+2(a7) put error code in d1.w
 ori #Carry,ccr set carry
 bra.s Trap90 exit

String1 dc.b "Microware Systems Corporation",C$CR,0
String2 dc.b " Quality keeps us #1",C$CR,0

**
* TrapTerm: Trap handler terminate entry point.
*
* As of this release (OS-9 V2.4) the trap termination entry
* point is never called by the OS-9 kernel. Documentation
* details will be available when a working implementation
* exists.

TrapTerm move.w #1<<8+199,d1 never called, if it gets here
 os9 F$Exit crash program (Error 001:199)
 ends

An Example Trap Handler User Trap Handlers

5 - 10 OS-9 Technical Manual

User Trap Handlers Trace of Example Two

OS-9 Technical Manual 5 - 11

Trace of Example Two using the Example Trap Handler

It is extremely educational to watch the OS-9 user debugger trace through the execution of Example Two
(using the example trap handler). User trap handlers look like subroutines to the debugger, so it is possible
to trace through them. The output should appear something like this:

(beginning of second example program)
Test >4E450000 trap #5,0

NOTE: Because the trap handler has not been linked as in Example One, control jumps to the subroutine
LinkTrap:

LinkTrap >508F addq.l #8,a7
LinkTrap+0x2 >48E7C0E0 movem.l d0-d1/a0-a2,-(a7)
LinkTrap+0x6 >7005 moveq.l #5,d0
LinkTrap+0x8 >7200 moveq.l #0,d1
LinkTrap+0xA >41FAFFDC lea.l bname+0xA(pc),a0
LinkTrap+0xE >4E400021 os9 F$TLink

NOTE: Control switches to the subroutine TrapInit and then returns to LinkTrap:

trap:btext+0x50 >4CD74000 movem.l (a7),a6
trap:btext+0x54 >508F addq.l #8,a7
trap:btext+0x56 >4E75 rts
LinkTrap+0x12 >65E8 bcs.b Test+0xE
LinkTrap+0x14 >4CDF0703 movem.l (a7)+,d0-d1/a0-a2
LinkTrap+0x18 >5997 subq.l #4,(a7)
LinkTrap+0x1A >4E75 rts

NOTE: Control now returns to the main program to re-execute the tcall instruction.

Trace of Example Two User Trap Handlers

5 - 12 OS-9 Technical Manual

Test >4E450000 trap #5,0
trap:TrapEnt >48E7C080 movem.l d0-d1/a0,-(a7)
trap:TrapEnt+0x4 >302F0010 move.w 16(a7),d0
trap:TrapEnt+0x8 >B07C0001 cmp.w #1,d0
trap:TrapEnt+0xC >621C bhi.b trap:TrapEnt+0x2A
trap:TrapEnt+0xE >6706 beq.b trap:TrapEnt+0x16
trap:TrapEnt+0x10 >41FA0026 lea.l trap:TrapEnt+0x38(pc),a0
trap:TrapEnt+0x14 >6004 bra.b trap:TrapEnt+0x1A
trap:TrapEnt+0x1A >7001 moveq.l #1,d0
trap:TrapEnt+0x1C >7250 moveq.l #80,d1
trap:TrapEnt+0x1E >4E40008C os9 I$WritLn
Microware Systems Corporation
trap:TrapEnt+0x22 >650A bcs.b trap:TrapEnt+0x2E
trap:TrapEnt+0x24 >4CDFC103 movem.l (a7)+,d0-d1/a0/a6-a7
trap:TrapEnt+0x28 >4E75 rts
Test+0x4 >6508 bcs.b Test+0xE
Test+0x6 >4E450001 trap #5,0x1

trap:TrapEnt >48E7C080 movem.l d0-d1/a0,-(a7)
trap:TrapEnt+0x4 >302F0010 move.w 16(a7),d0
trap:TrapEnt+0x8 >B07C0001 cmp.w #1,d0
trap:TrapEnt+0xC >621C bhi.b trap:TrapEnt+0x2A
trap:TrapEnt+0xE >6706 beq.b trap:TrapEnt+0x16->
trap:TrapEnt+0x16 >41FA003F lea.l trap:TrapEnt+0x57(pc),a0
trap:TrapEnt+0x1A >7001 moveq.l #1,d0
trap:TrapEnt+0x1C >7250 moveq.l #80,d1
trap:TrapEnt+0x1E >4E40008C os9 I$WritLn
 Quality keeps us #1
trap:TrapEnt+0x22 >650A bcs.b trap:TrapEnt+0x2E
trap:TrapEnt+0x24 >4CDFC103 movem.l (a7)+,d0-d1/a0/a6-a7
trap:TrapEnt+0x28 >4E75 rts
Test+0xA >6502 bcs.b Test+0xE
Test+0xC >7200 moveq.l #0,d1
Test+0xE >4E400006 os9 F$Exit

End of Chapter 5

OS-9 Technical Manual 6 - 1

Standard Function Library Module

OS-9 contains a standard function library math module which provides common subroutines for extended
mathematical and I/O conversion functions. OS-9 C, Basic09, and Fortran compilers also use this module.

OS-9 math modules provide the following functions:

• Basic floating point math

• Extended integer math

• Type conversion

• Transcendental and extended mathematical functions

Normally, the math module uses software routines located in a library file to provide the extended
functions. User programs can call the library directly, using the 68000 trap instruction. You can also use
these library files for non-OS-9 target systems. The following are library files that can be embedded in
your applications:

Library File Use on:

Math.l Systems without a math co-processor

Math881.l Systems with a math co-processor

The Math Module

The Math Module The Math Module

6 - 2 OS-9 Technical Manual

Systems that do not use a math co-processor can use the Math.l library file. In systems that do have a math
co-processer, you can replace the software-based files with files that use arithmetic processing hardware,
without altering the application software. For example, use the Math881 file for the 68881/882 FPCP.

The Math Module The Math Module

OS-9 Technical Manual 6 - 3

If you do not want the math module functions embedded within your application program, you can install
the appropriate module as a user trap routine, and call it using the 68000 trap instruction.

Module File
Name Name Trap# Use on:

Math Math 15 Systems without a math co-processor.

Math Math881 15 Systems with a math co-processor.

Calling Standard Function Module Routines The Math Module

6 - 4 OS-9 Technical Manual

Calling Standard Function Module Routines

You can use the OS-9 Load command to pre-load the standard function library module in memory for
quick access when needed. You can make it part of the system’s startup file. Including the trap handlers
in the OS9Boot file is not recommended. The following description of standard function module linkage
and calling methods is intended for assembly language programmers. Programs generated by the OS-9
compilers automatically perform all required functions without any special action on the part of the user.

Prior to calling the standard function modules, an assembly language program should use the OS-9
F$TLink system call. The TLink parameters should be the trap number and module name (refer to the
table on the previous page). This installs and links the user’s process to the desired module(s). Calls to
individual routines are made using the trap instruction. For example, a call to the FAdd function could
look like this:

trap #T$Math Trap number of module
dc.w T$FAdd Code of FAdd function

For simplicity, a macro is included in the assembler for this purpose. The following line is equivalent to
the above example:

tcall T$Math,T$FAdd Trap number and code for FAdd

In non-OS-9 target environments, you may also call these routines directly using bsr instructions, and
including the appropriate library in the code (math.l). For example:

bsr _T$FAdd Floating point addition

Many functions set the MPU status register N, Z, V, and C bits so the trap or bsr may be immediately
followed by a conditional branch instruction for comparisons and error checking. When an error occurs,
the system-wide convention is followed, where the C condition code bit is set and register d1 returns the
specific error code.

In some cases a trapv instruction executes at the end of a function. This causes a trapv exception if the V
(overflow) condition code is set.

The Math Module Calling Standard Function Module Routines

OS-9 Technical Manual 6 - 5

Data Formats

Some functions support two integer types:

unsigned 32-bit unsigned integers
long 32-bit signed integers

Two floating point formats are also supported:

float 32-bit floating point numbers
double 64-bit double precision floating point numbers

Floating point math routines use formats based on the proposed IEEE standard for compatibility with
floating point math hardware. 32-bit floating point operands are internally converted to 64-bit double
precision before computation and converted back to 32 bits afterwards as required by the IEEE and C
language standards. Therefore, the float type has no speed advantage over the double type. This package
does not support de-normalized numbers and negative zero.

The Math Module

The math module provides single and double precision floating point arithmetic, extended integer
arithmetic, and type conversion routines.

Integer Operations

T$LMul T$UMul T$LDiv T$LMod T$UDiv T$UMod

Single Precision Floating Point Operations

T$FAdd T$FInc T$FSub T$FDec T$FMul T$FDiv T$FCmp T$FNeg

Double Precision Floating Point Operations

T$DAdd T$DInc T$DSub T$DDec T$DMul T$DDiv T$DCmp T$DNeg

ASCII to Numeric Conversions

T$AtoN T$AtoL T$AtoU T$AtoF T$AtoD

Numeric to ASCII Conversions

T$LtoA T$UtoA T$FtoA T$DtoA

Numeric to Numeric Conversions

Calling Standard Function Module Routines The Math Module

6 - 6 OS-9 Technical Manual

T$LtoF T$LtoD T$UtoF T$UtoD T$FtoL T$DtoL T$FtoU T$DtoU
T$FtoD T$DtoF T$FTrn T$DTrn T$FInt T$DInt T$DNrm

The math module also provides transcendental and extended mathematical functions. The calling routine
controls the precision of these routines. For example, if fourteen digits of precision are required, the
floating-point representation for 1E-014 should be passed to the routine.

Function Name Operation

T$Sin Sine function
T$Cos Cosine function
T$Tan Tangent function
T$Asn Arc sine function
T$Acs Arc cosine function
T$Atn Arc tangent function
T$Log Natural logarithm function
T$Log10 Common logarithm function
T$Sqrt Square root function
T$Exp Exponential function
T$Power Power function

The following table contains the hex representations which you should pass to these routines to define the
precision of the operation.

Precision Hex Representation

1E-001 3fb99999 9999999a
1E-002 3f847ae1 47ae147b
1E-003 3f50624d d2f1a9fc
1E-004 3f1a36e2 eb1c432d
1E-005 3ee4f8b5 88e368f1
1E-006 3eb0c6f7 a0b5ed8e
1E-007 3e7ad7f2 9abcaf4a
1E-008 3e45798e e2308c3b
1E-009 3e112e0b e826d696
1E-010 3ddb7cdf d9d7bdbd
1E-011 3da5fd7f e1796497
1E-012 3d719799 812dea12
1E-013 3d3c25c2 68497683
1E-014 3d06849b 86a12b9c

NOTE: Using a precision greater than 14 digits may cause the routine to get trapped in an infinite loop.

The Math Module TAcs, TAsn

OS-9 Technical Manual 6 - 7

ASM CALL: TCALL T$Math,T$Acs

INPUT: d0:d1 = x
d2:d3 = Precision

OUTPUT: d0:d1 = ArcCos(x) (in radians)

CONDITION
CODES: C Set on error

POSSIBLE
ERRORS: E$IllArg

FUNCTION: T$Acs returns the arc cosine() in radians. If the operand passed is illegal, an error is
returned.

ASM CALL: TCALL T$Math,T$Asn

INPUT: d0:d1 = x
d2:d3 = Precision

OUTPUT: d0:d1 = ArcSin(x) (in radians)

CONDITION
CODES: C Set on error

POSSIBLE
ERRORS: E$IllArg

FUNCTION: T$Asn returns the arcsine() in radians. If the operand passed is illegal, an error is
returned.

T$Acs Arc Cosine Function

T$Asn Arcsine Function

T$Atn; T$AtoD The Math Module

6 - 8 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$Atn

INPUT: d0:d1 = x
d2:d3 = Precision

OUTPUT: d0:d1 = ArcTan(x) (in radians)

CONDITION
CODES: C Set on error

POSSIBLE
ERRORS: E$IllArg

FUNCTION: T$Atn returns the arc tangent() in radians. If the operand passed is illegal, an error is
returned.

ASM CALL: TCALL T$Math,T$AtoD

INPUT: (a0) = Pointer to ASCII string
 Format: <sign><digits>.<digits><E or e><sign><digits>

OUTPUT: (a0) = Updated pointer
d0:d1 = Double-precision floating-point number

CONDITION N Undefined
CODES: Z Undefined

V Set on underflow or overflow
C Set on error

POSSIBLE
ERRORS: E$NotNum or E$FmtErr

FUNCTION: T$AtoD performs a conversion from an ASCII string to a double-precision floating-
point number. If the first character is not the sign (+ or -) or a digit, E$NotNum is re-
turned. If the first character following the E is not the sign or a digit, E$FmtErr is re-
turned.

If the overflow bit (V) is set, zero (on underflow) or +/- infinity (overflow) is returned.

T$Atn Arc Tangent Function

T$AtoD ASCII to Double-Precision Floating Point

The Math Module T$AtoF

OS-9 Technical Manual 6 - 9

ASM CALL: TCALL T$Math,T$AtoF

INPUT: (a0) = Pointer to ASCII string
 Format: <sign><digits>.<digits><E or e><sign><digits>

OUTPUT: (a0) = Updated pointer
d0:d1 = Double-precision floating-point number

CONDITION N Undefined
CODES: Z Undefined

V Set on underflow or overflow
C Set on error

POSSIBLE
ERRORS: E$NotNum or E$FmtErr

FUNCTION: T$AtoF performs a conversion from an ASCII string to a single-precision floating-
point number. If the first character is not the sign (+ or -) or a digit, E$NotNum is re-
turned. If the first character following the E is not the sign or a digit, E$FmtErr is re-
turned.

If the overflow bit (V) is set, zero (on underflow) or +/- infinity (overflow) is returned.

T$AtoF ASCII to Single-Precision Floating-Point

T$AtoL The Math Module

6 - 10 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$AtoL

INPUT: (a0) = Pointer to ASCII string (format: <sign><digits>)

OUTPUT: (a0) = Updated pointer
d0.l = Signed long

CONDITION N Undefined
CODES: Z Undefined

V Set on overflow
C Set on error

POSSIBLE
ERRORS: E$NotNum

FUNCTION: T$AtoL performs a conversion from an ASCII string to a signed long integer. If the
first character is not a sign (+ or -) or a digit, an error is returned.

T$AtoL ASCII to Long Conversion

The Math Module T$AtoN

OS-9 Technical Manual 6 - 11

ASM CALL: TCALL T$Math,T$AtoN

INPUT: (a0) = Pointer to ASCII string

OUTPUT: (a0) = Updated pointer
d0 = Number if returned as long (signed or unsigned)
d0:d1 = Number if returned in floating point format

CONDITION
CODES: See explanation below.

POSSIBLE
ERRORS: TrapV

FUNCTION: T$AtoN can return results of various types depending on the format of the input string
and the magnitude of the converted value. The type of the result is passed back to the
calling program using the V and N condition code bits.

V=0 and N=1 indicate a signed integer is returned in d0.l

V=0 and N=0 indicate an unsigned integer is returned in d0.l

V=1 indicates a double-precision number is returned in d0:d1

If any of the following conditions are met, the number is returned as a double-precision
floating-point value:

• The number is positive and overflows an unsigned long.

• The number is negative and overflows a signed long.

• The number contains a decimal point and/or an E exponent.

If none of the above conditions are met, the result is returned as an unsigned long (if
positive) or a signed long (if negative).

T$AtoN ASCII to Numeric Conversion

T$AtoU The Math Module

6 - 12 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$AtoU

INPUT: (a0) = Pointer to ASCII string (format: <digits >)

OUTPUT: (a0) = Updated pointer
d0.l = Unsigned long

CONDITION N Undefined
CODES: Z Undefined

V Set on overflow
C Set on error

POSSIBLE
ERRORS: E$NotNum

FUNCTION: T$AtoU performs a conversion from an ASCII string to an unsigned long integer. If
the first character is not a digit, an error is returned.

T$AtoU ASCII to Unsigned Conversion

The Math Module T$Cos; T$DAdd

OS-9 Technical Manual 6 - 13

ASM CALL: TCALL T$Math,T$Cos

INPUT: d0:d1 = x (in radians)
d2:d3 = Precision

OUTPUT: d0:d1 = Cos(x)

CONDITION
CODES: C Always clear

POSSIBLE
ERRORS: None

FUNCTION: T$Cos returns the cosine() of an angle. The angle must be specified in radians. No
errors are possible, and all condition codes are undefined.

ASM CALL: TCALL T$Math,T$DAdd

INPUT: d0:d1 = Addend
d2:d3 = Augend

OUTPUT: d0:d1 = Result (d0:d1 + d2:d3)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow or overflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$DAdd adds two double-precision floating point numbers. Overflow and underflow
are indicated by setting the V bit. In either case, a trapv exception is generated. If an
underflow caused the exception, zero is returned. If it was an overflow, infinity (with
the proper sign) is returned.

T$Cos Cosine Function

T$DAdd Double Precision Addition

T$DCmp; T$DDec The Math Module

6 - 14 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$DCmp

INPUT: d0:d1 = First operand
d2:d3 = Second operand

OUTPUT: d0.l through d3.l remain unchanged

CONDITION N Set if second operand is larger than the first
CODES: Z Set if operands are equal

V Always cleared
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: Two double-precision floating point numbers are compared by T$DCmp. The
operands passed to this function are not destroyed.

ASM CALL: TCALL T$Math,T$DDec

INPUT: d0:d1 = Operand

OUTPUT: d0:d1 = Result (d0:d1 - 1.0)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: This function subtracts 1.0 from the double-precision floating point operand.
Underflow is indicated by setting the V bit. If an underflow occurs, a trapv exception
is generated and zero is returned.

T$DCmp Double Precision Compare

T$DDec Double Precision Decrement

The Math Module T$DDiv

OS-9 Technical Manual 6 - 15

ASM CALL: TCALL T$Math,T$DDiv

INPUT: d0:d1 = Dividend
d2:d3 = Divisor

OUTPUT: d0:d1 = Result (d0:d1 / d2:d3)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow, overflow, or divide by zero
C Set on divide by zero

POSSIBLE
ERRORS: TrapV

FUNCTION: T$DDiv performs division on two double-precision floating point numbers. Overflow,
underflow, and divide-by-zero are indicated by setting the V bit. In any case, a trapv
exception is generated. If an underflow caused the exception, zero is returned. If it was
an overflow or divide-by-zero, infinity (with the proper sign) is returned.

T$DDiv Double Precision Divide

T$DInc; T$DInt The Math Module

6 - 16 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$DInc

INPUT: d0:d1 = Operand

OUTPUT: d0:d1 = Result (d0:d1 + 1.0)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on overflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$DInc adds 1.0 to the double-precision floating point operand. Overflow is indicated
by setting the V bit. If an overflow occurs, a trapv exception is generated and infinity
(with the proper sign) is returned.

ASM CALL: TCALL T$Math,T$DInt

INPUT: d0:d1 = Double-precision floating-point number

OUTPUT: d0:d1 = Rounded double-precision floating-point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: Floating point numbers consist of two parts: integer and fraction. The purpose of
T$DInt is to round the floating point number passed to it, leaving only an integer. If
the fraction is exactly 0.5, the integer is rounded to an even number.

EXAMPLES: 23.45 rounds to 23.00
23.50 rounds to 24.00
23.73 rounds to 24.00
24.50 rounds to 24.00 (rounds to even number)

T$DInc Double Precision Increment

T$DInt Round Double-Precision Floating-Point Number

The Math Module T$DMul

OS-9 Technical Manual 6 - 17

ASM CALL: TCALL T$Math,T$DMul

INPUT: d0:d1 = Multiplicand
d2:d3 = Multiplier

OUTPUT: d0:d1 = Result (d0:d1 * d2:d3)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow or overflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$DMul multiplies two double-precision floating point numbers. Overflow and
underflow are indicated by setting the V bit. In either case, a trapv exception is
generated. If an underflow caused the exception, zero is returned. If it was an overflow,
infinity (with the proper sign) is returned.

T$DMul Double Precision Multiplication

T$DNeg The Math Module

6 - 18 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$DNeg

INPUT: d0:d1 = Operand

OUTPUT: d0:d1 = Result (d0:d1 * -1.0)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Always cleared
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: T$DNeg negates a double-precision floating point operand. To eliminate the overhead
of calling this routine, it is simple to change the sign bit of the floating-point number.
However, you should check for a zero number because this package does not support
negative zero.

This example is written as a subroutine and expects the floating-point number to be in
d0:d1.

Negate tst.l d0 test for zero
 beq.s Neg10 branch if it is zero
 bchg #31,d0 change sign bit
Neg10 rts return

T$DNeg Double Precision Negate

The Math Module T$DNrm; T$DSub

OS-9 Technical Manual 6 - 19

ASM CALL: TCALL T$Math,T$DNrm

INPUT: d0:d1 = 64-bit Unsigned Integer
d2.l = Exponent

OUTPUT: d0:d1 = Double-precision floating-point number

CONDITION N Undefined
CODES: Z Undefined

V Set on underflow or overflow
C Undefined

POSSIBLE
ERRORS: None

FUNCTION: Double-precision floating point numbers maintain 52 bits of mantissa. T$DNrm
converts a 64-bit binary number to double-precision format. The extra 12 bits are
rounded. If an underflow or overflow occurs, the V bit is set, but a trapv exception is
not generated.

ASM CALL: TCALL T$Math,T$DSub

INPUT: d0:d1 = Minuend
d2:d3 = Subtrahend

OUTPUT: d0:d1 = Result (d0:d1 - d2:d3)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow or overflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$DSub performs subtraction on two double-precision floating point numbers.
Overflow and underflow are indicated by setting the V bit. In either case, a trapv
exception is generated. If an underflow caused the exception, zero is returned. If it was
an overflow, infinity (with the proper sign) is returned.

T$DNrm 64-bit Unsigned to Double-Precision Conversion

T$DSub Double-Precision Subtraction

T$DtoA The Math Module

6 - 20 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$DtoA

INPUT: d0:d1 = Double-precision floating-point number
d2.l = Low-Word: digits desired in result
 High-Word: digits desired after decimal-point
(a0) = Pointer to conversion buffer

OUTPUT: (a0) = ASCII digit string
d0.l = Two’s complement exponent

CONDITION N Set if the number is negative
CODES: Z Undefined

V Undefined
C Undefined

POSSIBLE
ERRORS: None

FUNCTION: The double-precision float passed to T$DtoA is converted to an ASCII string. The
conversion terminates as soon as the number of digits requested are converted, or when
the specified digit after the decimal point is reached; whichever comes first. A null is
appended to the end of the string. Therefore, the buffer should be one byte larger than
the expected number of digits.

The converted string only contains the mantissa digits. The N bit indicates the sign of
the number, and the exponent returns in register d0.

T$DtoA Double-Precision Floating-Point to ASCII

The Math Module T$DtoF; T$DtoL

OS-9 Technical Manual 6 - 21

ASM CALL: TCALL T$Math,T$DtoF

INPUT: d0:d1 = Double-precision floating-point number

OUTPUT: d0.l = Single-precision floating-point number

CONDITION N Undefined
CODES: Z Undefined

V Set on underflow or overflow
C Undefined

POSSIBLE
ERRORS: TrapV

FUNCTION: T$DtoF converts floating-point numbers in double-precision format to single-precision
format. No errors are possible and all condition codes are undefined. If an overflow or
underflow occurs, the V bit is set and a trapv exception is generated.

ASM CALL: TCALL T$Math,T$DtoL

INPUT: d0:d1 = Double-precision floating-point number

OUTPUT: d0.l = Signed Long Integer

CONDITION N Undefined
CODES: Z Undefined

V Set on overflow
C Undefined

POSSIBLE
ERRORS: TrapV

FUNCTION: The integer portion of the floating point number is converted to a signed long integer.
The fraction is truncated. If an overflow occurs, the V bit is set and a trapv exception
is generated.

T$DtoF Double to Single Floating-Point Conversion

T$DotL Double -Precision to Signed Long Integer

T$DtoU; T$DTrn The Math Module

6 - 22 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$DtoU

INPUT: d0:d1 = Double-precision floating-point number

OUTPUT: d0.l = Unsigned Long Integer

CONDITION N Undefined
CODES: Z Undefined

V Set on overflow
C Undefined

POSSIBLE
ERRORS: TrapV

FUNCTION: The integer portion of the floating point number converts to an unsigned long integer.
The fraction is truncated. If an overflow occurs, the V bit is set and a trapv exception
is generated.

ASM CALL: TCALL T$Math,T$DTrn

INPUT: d0:d1 = Double-precision floating-point number

OUTPUT: d0:d1 = Normalized integer portion of the floating point number
d2:d3 = Normalized fractional portion of the floating point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: Floating point numbers consist of two parts: integer and fraction. The purpose of
T$DTrn is to separate the two parts. For example, if the number passed is 283.75, this
function returns 283.00 in d0:d1 and 0.75 in d2:d3.

T$DtoU Double-Precision to Unsigned Long Integer

T$DTrn Truncate Double-Precision Floating-Point Number

The Math Module T$Exp; T$FAdd

OS-9 Technical Manual 6 - 23

ASM CALL: TCALL T$Math,T$Exp

INPUT: d0:d1 = x
d2:d3 = Precision

OUTPUT: d0:d1 = Exp(x)

CONDITION
CODES: C Always clear

POSSIBLE
ERRORS: None

FUNCTION: T$Exp performs the exponential function on the argument passed. That is, it raises e
to the x power (where e = 2.718282 and x is the argument passed).

ASM CALL: TCALL T$Math,T$FAdd

INPUT: d0.l = Addend
d1.l = Augend

OUTPUT: d0.l = Result (d0 + d1)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow or overflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$FAdd adds two single-precision floating point numbers. Overflow and underflow
are indicated by setting the V bit. In either case, a trapv exception is generated. If an
underflow caused the exception, zero is returned. If it was an overflow, infinity (with
the proper sign) is returned.

T$Exp Exponential Function

T$FAdd Single Precision Addition

T$FCmp; T$FDec The Math Module

6 - 24 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$FCmp

INPUT: d0.l = First operand
d1.l = Second operand

OUTPUT: d0.l and d1.l remain unchanged

CONDITION N Set if second operand is larger than the first
CODES: Z Set if operands are equal

V Always cleared
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: Two single-precision floating point numbers are compared by T$FCmp. The operands
passed to T$FCmp are not destroyed.

ASM CALL: TCALL T$Math,T$FDec

INPUT: d0.l = Operand

OUTPUT: d0.l = Result (d0 - 1.0)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$FDec subtracts 1.0 from the single-precision floating point operand. Underflow is
indicated by setting the V bit. If an underflow occurs, a trapv exception is generated
and zero is returned.

T$FCmp Single Precision Compare

T$FDec Single Precision Decrement

The Math Module T$FDiv

OS-9 Technical Manual 6 - 25

ASM CALL: TCALL T$Math,T$FDiv

INPUT: d0.l = Dividend
d1.l = Divisor

OUTPUT: d0.l = Result (d0 / d1)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow, overflow or divide by zero
C Set on divide by zero

POSSIBLE
ERRORS: TrapV

FUNCTION: T$FDiv performs division on two single-precision floating point numbers. Overflow,
underflow, and divide-by-zero are indicated by setting the V bit. In any case, a trapv
exception is generated. If an underflow caused the exception, zero is returned. If it was
an overflow or divide-by-zero, infinity (with the proper sign) is returned.

T$FDiv Single Precision Divide

T$FInc The Math Module

6 - 26 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$FInc

INPUT: d0.l = Operand

OUTPUT: d0.l = Result (d0 + 1.0)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on overflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$FInc adds 1.0 to the single-precision floating point operand. Overflow is indicated
by setting the V bit. If an overflow occurs, a trapv exception is generated and infinity
(with the proper sign) is returned.

T$FInc Single Precision Increment

The Math Module T$FInt

OS-9 Technical Manual 6 - 27

ASM CALL: TCALL T$Math,T$FInt

INPUT: d0.l = Single-precision floating-point number

OUTPUT: d0.l = Rounded single-precision floating-point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: Floating point numbers consist of two parts: integer and fraction. The purpose of
T$FInt is to round the floating point number passed to it, leaving only an integer. If the
fraction is exactly 0.5, the integer is rounded to an even number.

EXAMPLES: 23.45 rounds to 23.00
23.50 rounds to 24.00
23.73 rounds to 24.00
24.50 rounds to 24.00 (rounds to even number)

T$FInt Round Single-Precision Floating-Point Number

T$FMul The Math Module

6 - 28 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$FMul

INPUT: d0.l = Multiplicand
d1.l = Multiplier

OUTPUT: d0.l = Result (d0 * d1)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow or overflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$FMul multiplies two single-precision floating point numbers. Overflow and
underflow are indicated by setting the V bit. In either case, a trapv exception is
generated. If an underflow caused the exception, zero is returned. If it was an overflow,
infinity (with the proper sign) is returned.

T$FMul Single Precision Multiplication

The Math Module T$FNeg

OS-9 Technical Manual 6 - 29

ASM CALL: TCALL T$Math,T$FNeg

INPUT: d0.l = Operand

OUTPUT: d0.l = Result (d0 * -1.0)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Always cleared
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: T$FNeg negates a single-precision floating point operand. To eliminate the overhead
of calling this routine, it is simple to change the sign bit of the floating-point number.
Be sure to check for a zero number, because this package does not support negative
zero.

This example is written as a subroutine and expects the floating-point number to be in
d0.

Negate tst.l d0 test for zero
 beq.s Neg10 branch if it is zero
 bchg #31,d0 change sign bit
Neg10 rts return

T$FNeg Single Precision Negate

T$FSub The Math Module

6 - 30 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$FSub

INPUT: d0.l = Minuend
d1.l = Subtrahend

OUTPUT: d0.l = Result (d0 - d1)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on underflow or overflow
C Always cleared

POSSIBLE
ERRORS: TrapV

FUNCTION: T$FSub performs subtraction on two single-precision floating point numbers.
Overflow and underflow are indicated by setting the V bit. In either case, a trapv
exception is generated. If an underflow caused the exception, zero is returned. If it was
an overflow, infinity (with the proper sign) is returned.

T$FSub Single Precision Subtraction

The Math Module T$FtoA

OS-9 Technical Manual 6 - 31

ASM CALL: TCALL T$Math,T$FtoA

INPUT: d0.l = Single-precision floating-point number
d2.l = Low-Word: digits desired in result
 High-Word: digits desired after decimal-point
(a0) = Pointer to conversion buffer

OUTPUT: (a0) = ASCII digit string
d0.l = Two’s complement exponent

CONDITION N Set if the number is negative
CODES: Z Undefined

V Undefined
C Undefined

POSSIBLE
ERRORS: None

FUNCTION: The single-precision float passed to T$FtoA is converted to an ASCII string. The
conversion terminates as soon as the number of digits requested are converted or when
the specified digit after the decimal point is reached; whichever comes first. A null is
appended to the end of the string. Therefore, the buffer should be one byte larger than
the expected number of digits.

The converted string only contains the mantissa digits. The N bit indicates the sign of
the number, and the exponent is returned in register d0.

T$FtoA Single-Precision Floating-Point to ASCII

T$FtoD; T$FtoL The Math Module

6 - 32 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$FtoD

INPUT: d0.l = Single-precision floating-point number

OUTPUT: d0:d1 = Double-precision floating-point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: T$FtoD converts floating-point numbers in single-precision format to double-precision
format. No errors are possible and all condition codes are undefined.

ASM CALL: TCALL T$Math,T$FtoL

INPUT: d0.l = Single-precision floating-point number

OUTPUT: d0.l = Signed Long Integer

CONDITION N Undefined
CODES: Z Undefined

V Set on overflow
C Undefined

POSSIBLE
ERRORS: TrapV

FUNCTION: T$FtoL converts the integer portion of the floating point number to a signed long
integer. The fraction is truncated. If an overflow occurs, the V bit is set and a trapv
exception is generated.

T$FtoD Single to Double Floating-Point Conversion

T$FtoL Single-Precision to Signed Long Integer

The Math Module T$FtoU; T$FTrn

OS-9 Technical Manual 6 - 33

ASM CALL: TCALL T$Math,T$FtoU

INPUT: d0.l = Single-precision floating-point number

OUTPUT: d0.l = Unsigned Long Integer

CONDITION N Undefined
CODES: Z Undefined

V Set on overflow
C Undefined

POSSIBLE
ERRORS: TrapV

FUNCTION: T$FtoU converts the integer portion of the floating point number to an unsigned long
integer. The fraction is truncated. If an overflow occurs, the V bit is set and a trapv
exception is generated.

ASM CALL: TCALL T$Math,T$FTrn

INPUT: d0.l = Single-precision floating-point number

OUTPUT: d0.l = Truncated single-precision floating-point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: Floating point numbers consist of two parts: integer and fraction. The purpose of
T$FTrn is to truncate the fractional part. For example, if the number passed is 283.75,
this function returns 283.00.

T$FtoU Single Precision to Unsigned Long Integer

T$FTrn Truncate Single-Precision Floating-Point Number

T$LDiv; T$LMod The Math Module

6 - 34 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$LDiv

INPUT: d0.l = Dividend
d1.l = Divisor

OUTPUT: d0.l = Result (d0 / d1)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on divide by zero
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: T$LDiv performs 32-bit integer division. A division by zero error is indicated by
setting the overflow bit. If a division by zero is attempted, infinity (with the proper
sign) is returned.

Positive Infinity = $7FFFFFFF
Negative Infinity = $80000000

ASM CALL: TCALL T$Math,T$LMod

INPUT: d0.l = Dividend
d1.l = Divisor

OUTPUT: d0.l = Result (Mod(d0/d1))

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on divide by zero
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: T$LMod returns the remainder (modulo) of the integer division. If an overflow occurs,
the V bit is set and zero is returned.

T$LDiv Long (Signed) Divide

T$LMod Long (Signed) Modulus

The Math Module T$LMul; T$Log

OS-9 Technical Manual 6 - 35

ASM CALL: TCALL T$Math,T$LMul

INPUT: d0.l = Multiplicand
d1.l = Multiplier

OUTPUT: d0.l = Result (d0 * d1)

CONDITION N Set if result is negative
CODES: Z Set if result is zero

V Set on overflow
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: T$LMul performs a 32-bit signed integer multiplication. If an overflow occurs, the V
bit is set and the lower 32 bits of the result is returned. If an overflow occurs, the sign
of the result is still correct.

ASM CALL: TCALL T$Math,T$Log

INPUT: d0:d1 = x
d2:d3 = Precision

OUTPUT: d0:d1 = Log(x)

CONDITION
CODES: C Set on error

POSSIBLE
ERRORS: E$IllArg

FUNCTION: T$Log returns the natural logarithm of the argument passed. If an illegal argument is
passed, an error is returned.

T$LMul Long (Signed) Multiply

T$Log Natural Logarithm Function

T$Log10; T$LtoA The Math Module

6 - 36 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$Log10

INPUT: d0:d1 = x
d2:d3 = Precision

OUTPUT: d0:d1 = Log10(x)

CONDITION
CODES: C Set on error

POSSIBLE
ERRORS: E$IllArg

FUNCTION: T$Log10 returns the common logarithm of the argument passed. If an illegal argument
is passed, an error is returned.

ASM CALL: TCALL T$Math,T$LtoA

INPUT: d0.l = Signed long integer
(a0) = Pointer to conversion buffer

OUTPUT: (a0) = ASCII digit string

CONDITION N Set if the number is negative
CODES: Z Undefined

V Undefined
C Undefined

POSSIBLE
ERRORS: None

FUNCTION: The signed long passed to T$LtoA is converted to an ASCII string of ten (10) digits. If
the number is smaller than ten digits, it is right justified and padded with leading zeros.
A null is appended to the end of the string making the minimum size of the buffer eleven
(11) characters.

NOTE: The N bit indicates the sign and is not included in the ASCII string.

T$Log10 Common Logarithm Function

T$LtoA Signed Integer to ASCII Conversion

The Math Module T$LtoD; T$LtoF

OS-9 Technical Manual 6 - 37

ASM CALL: TCALL T$Math,T$LtoD

INPUT: d0.l = Signed long integer

OUTPUT: d0:d1 = Double-precision floating-point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: T$LtoD converts the signed integer to a double-precision float. No errors are possible
and all condition codes are undefined.

ASM CALL: TCALL T$Math,T$LtoF

INPUT: d0.l = Signed long integer

OUTPUT: d0.l = Single-precision floating-point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: T$LtoF converts the signed integer to a single-precision float. No errors are possible
and all condition codes are undefined.

T$LtoD Signed Long to Double-Precision Floating-Point

T$LtoF Signed Long to Single-Precision Floating-Point

T$Power; T$Sin The Math Module

6 - 38 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$Power

INPUT: d0:d1 = x
d2:d3 = y
d4:d5 = Precision

OUTPUT: d0:d1 = x^y

CONDITION
CODES: C Set on error

POSSIBLE
ERRORS: E$IllArg

FUNCTION: T$Power performs the power function on the arguments passed. That is, it raises x to
the y power. If an illegal argument is passed, an error is returned.

ASM CALL: TCALL T$Math,T$Sin

INPUT: d0:d1 = x (in radians)
d2:d3 = Precision

OUTPUT: d0:d1 = Sin(x)

CONDITION
CODES: C Always clear

POSSIBLE
ERRORS: None

FUNCTION: T$Sin returns the sine() of an angle. The angle must be specified in radians. No errors
are possible, and all condition codes are undefined.

T$Power Power Function

T$Sin Tangent Function

The Math Module T$Sqrt; T$Tan

OS-9 Technical Manual 6 - 39

ASM CALL: TCALL T$Math,T$Sqrt

INPUT: d0:d1 = x
d2:d3 = Precision

OUTPUT: d0:d1 = Sqrt(x)

CONDITION
CODES: C Set on error

POSSIBLE
ERRORS: E$IllArg

FUNCTION: T$Sqrt returns the square root of the argument passed. If an illegal argument is passed
an error is returned.

ASM CALL: TCALL T$Math,T$Tan

INPUT: d0:d1 = x (in radians)
d2:d3 = Precision

OUTPUT: d0:d1 = Tan(x)

CONDITION
CODES: C Always clear

POSSIBLE
ERRORS: None

FUNCTION: T$Tan returns the tangent() of an angle. The angle must be specified in radians. No
errors are possible, and all condition codes are undefined.

T$Sqrt Square Root Function

T$Tan Tangent Function

T$UDiv; T$UMod The Math Module

6 - 40 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$UDiv

INPUT: d0.l = Dividend
d1.l = Divisor

OUTPUT: d0.l = Result (d0 / d1)

CONDITION N Undefined
CODES: Z Set if result is zero

V Set on divide by zero
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: T$UDiv performs 32-bit unsigned integer division. The overflow bit is set when a
division by zero error occurs. If a division by zero is attempted, infinity ($FFFFFFFF)
is returned.

ASM CALL: TCALL T$Math,T$UMod

INPUT: d0.l = Dividend
d1.l = Divisor

OUTPUT: d0.l = Result (Mod(d0/d1))

CONDITION N Undefined
CODES: Z Set if result is zero

V Set on divide by zero
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: T$UMod returns the remainder (modulo) of the integer division. If an overflow occurs,
the V bit is set and zero is returned.

T$UDiv Unsigned Divide

T$UMod Unsigned Modulus

The Math Module T$UMul; T$UtoA

OS-9 Technical Manual 6 - 41

ASM CALL: TCALL T$Math,T$UMul

INPUT: d0.l = Multiplicand
d1.l = Multiplier

OUTPUT: d0.l = Result (d0 * d1)

CONDITION N Undefined
CODES: Z Set if result is zero

V Set on overflow
C Always cleared

POSSIBLE
ERRORS: None

FUNCTION: T$UMul performs a 32-bit unsigned integer multiplication. If an overflow occurs, the
V bit is set and the lower 32 bits of the result is returned.

ASM CALL: TCALL T$Math,T$UtoA

INPUT: d0.l = Unsigned long integer
(a0) = Pointer to conversion buffer

OUTPUT: (a0) = ASCII digit string

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: The unsigned long passed to T$UtoA is converted to an ASCII string of ten digits. If
the number is smaller than ten digits, it is right justified and padded with leading zeros.
A null is appended to the end of the string, making the minimum size of the buffer
eleven characters.

T$UMul Unsigned Multiply

T$UtoA Unsigned Integer to ASCII Conversion

T$UtoD; T$UtoF The Math Module

6 - 42 OS-9 Technical Manual

ASM CALL: TCALL T$Math,T$UtoD

INPUT: d0.l = Unsigned long integer

OUTPUT: d0:d1 = Double-precision floating-point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: T$UtoD converts the unsigned integer to a double-precision float. No errors are
possible and all condition codes are undefined.

ASM CALL: TCALL T$Math,T$UtoF

INPUT: d0.l = Unsigned long integer

OUTPUT: d0.l = Single-precision floating-point number

CONDITION
CODES: All condition codes are undefined.

POSSIBLE
ERRORS: None

FUNCTION: T$UtoF converts the unsigned integer to a single-precision float. No errors are possible
and all condition codes are undefined.

T$UtoD Unsigned Long to Double-Precision Floating-Point

T$UtoF Unsigned Long to Single-Precision Floating-Point

End of Chapter 6

The Math Module NOTES

OS-9 Technical Manual 6 - 43

NOTES

OS-9 Technical Manual 7-1

Disk File Organization

RBF supports a tree-structured file system. The physical disk organization is designed for efficient use of
disk space, resistance to accidental damage, and fast file access. The system also has the advantage of
relative simplicity.

Basic Disk Organization

RBF supports logical sector sizes in integral binary multiples from 256 to 32768 bytes. If you use a disk
system that cannot directly support the logical sector size (for example, 256 byte logical sectors on a 512-
byte physical sector disk), the driver module must divide or combine sectors as required to simulate the
required logical size.

Many disks are physically addressed by track number, surface number, and sector number. To eliminate
hardware dependencies, OS-9 uses a logical sector number (LSN) to identify each sector without regard
to track and surface numbering.

It is the responsibility of the disk driver module or the disk controller to map logical sector numbers to
track/surface/sector addresses. OS-9’s file system uses LSNs from 0 to (n-1), where “n” is the total
number of sectors on the drive.

NOTE: All sector addresses discussed in this section refer to LSNs.

OS-9 File
System

Basic Disk Organization OS-9 File System

7-2 OS-9 Technical Manual

The format utility initializes the file system on blank or recycled media by creating the track/surface/sector
structure. format also tests the media for bad sectors and automatically excludes them from the file
system.

Every OS-9 disk has the same basic structure. An identification sector is located in logical sector zero
(LSN 0). It contains a description of the physical and logical format of the storage volume (disk media).
A disk allocation map usually begins in logical sector one (LSN 1). This indicates which disk sectors are
free for use in new or expanded files. A root directory of the volume begins immediately after the disk
allocation map.

OS-9 File System Identification Sector

OS-9 Technical Manual 7-3

Identification Sector

LSN zero always contains the identification sector (see Figure 7-1). It describes the physical format of the
disk, the size of the allocation map, and the location of the root directory. It also contains the volume name,
date and time of creation, etc. If the disk is a bootable system disk it also has the starting LSN and size of
the OS9Boot file.

Addr Size Name Description

$00 3 DD_TOT Total number of sectors on media
$03 1 DD_TKS Track size in sectors
$04 2 DD_MAP Number of bytes in allocation map
$06 2 DD_BIT Number of sectors/bit (cluster size)
$08 3 DD_DIR LSN of root directory file descriptor
$0B 2 DD_OWN Owner ID
$0D 1 DD_ATT Attributes
$0E 2 DD_DSK Disk ID
$10 1 DD_FMT Disk Format; density/sides

Bit 0: 0 = single side
1 = double side

Bit 1: 0 = single density (FM)
1 = double density (MFM)

Bit 2: 1 = double track (96 TPI/135 TPI)
Bit 3: 1 = quad track density (192 TPI)
Bit 4: 1 = octal track density (384 TPI)

$11 2 DD_SPT Sectors/track (two byte value DD_TKS)
$13 2 DD_RES Reserved for future use
$15 3 DD_BT System bootstrap LSN
$18 2 DD_BSZ Size of system bootstrap
$1A 5 DD_DAT Creation date
$1F 32 DD_NAM Volume name
$3F 32 DD_OPT Path descriptor options
$5F 1 Reserved
$60 4 DD_SYNC Media integrity code
$64 4 DD_MapLSN Bitmap starting sector number (0=LSN 1)
$68 2 DD_LSNSize Media logical sector size (0=256)
$6A 2 DD_VersID Sector 0 Version ID

Allocation Map OS-9 File System

7-4 OS-9 Technical Manual

Allocation Map

The allocation map shows which sectors are allocated to files and which are free for future use.
DD_MapLSN specifies the allocation map start address, which is usually 1. If this field is 0, assume an
address of 1. The size of the map varies according to how many bits are needed. Each bit in the allocation
map represents a cluster on the disk. If a bit is set, the cluster is considered to be in use, defective, or non-
existent. DD_MAP (see Figure 7-1) specifies the actual number of bytes used in the map.

NOTE: The DD_Bit variable specifies the number of sectors per cluster. The number of sectors per
cluster is always an integral power of two.

The format utility sets the size of the allocation map depending on the size and number of sectors per
cluster. You can select the number of sectors per cluster on the command line when invoking the format
utility.

Root Directory

The root directory file is the parent directory of all other files and directories on the disk. It is the directory
accessed using the physical device name (such as /d1). Usually, it immediately follows the allocation map.
The location of the root directory file descriptor is specified in DD_DIR (see Figure 7-1).

Basic File Structure

OS-9 uses a multiple-contiguous-segment type of file structure. Segments are physically contiguous
sectors that store the file’s data. If all the data cannot be stored in a single segment, additional segments
are allocated to the file. This may occur if a file is expanded after creation, or if a sufficient number of
contiguous free sectors is not available.

The OS-9 segmentation method was designed to keep a file’s data sectors in as close physical proximity
as possible to minimize disk head movement. Frequently, files (especially small files) have only one
segment. This results in the fastest possible access time. Therefore, it is good practice to initialize the size
of a file to the maximum expected size during or immediately after its creation. This allows OS-9 to
optimize its storage allocation.

All files have a sector called a file descriptor sector, or FD. FD contains a list of the data segments with
their starting LSNs and sizes. This is also where information such as file attributes, owner, and time of
last modification is stored. Only the system uses this sector; it is not directly accessible by the user. The
table in Figure 7-2 describes the contents of a file descriptor.

OS-9 File System Segment Allocation

OS-9 Technical Manual 7-5

NOTE: Offset refers to the location of a field, relative to the starting address of the file descriptor. Offsets
are resolved in assembly code by using the names shown here and linking the module with the relocatable
library: sys.l or usr.l.

The attribute byte (FD_ATT) contains the file permission bits. Bit 7 is set to indicate a directory file, bit
6 indicates a non-sharable file, bit 5 indicates public execute, bit 4 indicates public write, etc.

The date last modified (FD_DAT) changes when a file is opened in write or update mode. This is useful
for making date-dependant backups.

The segment list (FD_SEG) consists of a series of five-byte entries, continuing until the end of the logical
sector. For 256-byte sectors, this results in 48 entries. These entries have the size and address of each
block of storage used by the file in logical order. Each entry has a three-byte logical sector number that
specifies the beginning of the block and a two-byte block size (in sectors). Unused segments must be zero.

The RBF file manager maintains the file pointer, logical end-of-file, etc., used by application software and
converts them to the logical disk sector number using the data in the segment list.

You do not have to be concerned with physical sectors. OS-9 provides fast random access to data stored
anywhere in the file. All the information required to map the logical file pointer to a physical sector
number is packaged in the file descriptor sector. This makes OS-9’s record-locking functions very
efficient.

Segment Allocation

Each device descriptor module has a value called a segment allocation size. It specifies the minimum
number of sectors to allocate to a new segment. The goal is to avoid a large number of tiny segments when
a file is expanded. If your system uses a small number of large files, this field should be set to a relatively
high value, and vice versa.

Offset Size Name Description

$00 1 FD_ATT File Attributes: D S PE PW PR E W R
$01 2 FD_OWN Owner’s User ID
$03 5 FD_DAT Date Last Modified: Y M D H M
$08 1 FD_LNK Link Count
$09 4 FD_SIZ File Size (number of bytes)
$0D 3 FD_CREAT Date Created: Y M D
$10 240 FD_SEG Segment List: see below

Figure 7-2: File Descriptor Content Description

Directory File Format OS-9 File System

7-6 OS-9 Technical Manual

When a file is created, it has no data segments allocated to it. Write operations past the current end-of-file
(the first write is always past the end-of-file) cause allocation of additional sectors to the file. Subsequent
expansions of the file are also generally made in minimum allocation increments.

NOTE: An attempt is made to expand the last segment before attempting to add a new segment.

If not all of the allocated sectors are used when the file is closed, the segment is truncated and any unused
sectors are de-allocated in the bitmap. This strategy does not work very well for random-access data bases
that expand frequently by only a few records. The segment list is rapidly filled with small segments. A
provision has been added to prevent this from being a problem.

If a file (opened in write or update mode) is closed when it is not at end-of-file, the last segment of the file
is not truncated. To be effective, all programs that deal with the file in write or update mode must ensure
that they do not close the file while at end-of-file, or the file will lose any excess space it may have. The
easiest way to ensure this is to do a seek(0) before closing the file. This method was chosen because
random access files are frequently somewhere other than end-of-file, and sequential files are almost
always at end-of-file when closed.

Directory File Format

Directory files have the same physical structure as other files with one exception: RBF must impose a
convention for the logical contents of a directory file.

A directory file consists of an integral number of 32-byte entries. The end of the directory is indicated by
the normal end-of-file. Each entry consists of a field for the file name and a field for the file’s file
descriptor address.

The file name field (DIR_NM) is 28 bytes long (bytes 0-27) and has the sign bit of the last character of the
file name set. The first byte is set to zero, indicating a deleted or unused entry. The file descriptor address
field (DIR_FD) is three bytes long (bytes 29-31) and is the LSN of the file’s FD sector. Byte 28 is not
used and must be zero.

When a directory file is created, two entries are automatically created: the dot (.) and double dot (..)
directory entries. These specify the directory and its parent directory, respectively.

OS-9 File System Raw Physical I/O on RBF Devices

OS-9 Technical Manual 7-7

Raw Physical I/O on RBF Devices

You can open an entire disk as one logical file. This allows access of any byte(s) or sector(s) by physical
address without regard to the normal file system. This feature is provided for diagnostic and utility
programs that must be able to read and write to ordinarily non-accessible disk sectors.

A device is opened for physical I/O by appending the at (@) character to the device name. For example,
you can open the device /d2 for raw physical I/O under the pathlist /d2@.

Standard open, close, read, write, and seek system calls are used for physical I/O. A seek system call
positions the file pointer to the actual disk physical address of any byte. To read a specific sector, perform
a seek to the address computed by multiplying the LSN by the logical sector size of the media. You can
find the logical sector size in the PD_SctSiz field of the path descriptor (if 0, assume a value of 256 bytes).
For example, on 1024-byte logical media, to read sector 3, perform a seek to address 3072 (1024 * 3),
followed by a read system call requesting 1024 bytes.

If the number of sectors per track of the disk is known or read from the identification sector, any
track/sector address can be readily converted to a byte address for physical I/O.

WARNINGS: Use extreme care with the special “@” file in update mode. To keep system overhead low,
record locking routines only check for conflicts on paths opened for the same file. The “@” file is
considered different from any other file, and therefore only conforms to record lockouts with other users
of the “@” file.

Improper physical I/O operations can corrupt the file system. Take great care when writing to a raw
device. Physical I/O calls also bypass the file security system. For this reason, only super-users are
allowed to open the raw device for write permit. Non-super-users are only permitted to read the
identification sector (LSN 0) and the allocation bitmap. Attempts to read past this return an end-of-file
error.

Record Locking OS-9 File System

7-8 OS-9 Technical Manual

Record Locking

Record locking is a general term that refers to preserving the integrity of files that more than one user or
process can access. OS-9 record locking is designed to be as invisible as possible to application programs.

Most programs may be written without special concern for multi-user activity.

Simply stated, record locking involves:

¿ Recognizing when a process is trying to read a record that another process may be modifying.

¡ Deferring the read request until the record is safe.

This is referred to as conflict detection and prevention. RBF record locking also handles non-sharable files
and deadlock detection.

Record Locking and Unlocking

Conflict detection must determine when a record is in the process of being updated. RBF provides true
record locking on a byte basis. A typical record update sequence is:

OS9 I$Read program reads record RECORD IS LOCKED
 .
 . program updates record
 .
OS9 I$Seek reposition to record
OS9 I$Write record is rewritten RECORD IS RELEASED

When a file is opened in update mode, ANY read causes the record to be locked out because RBF does not
know in advance if the record will be updated. The record remains locked until the next read, write, or
close occurs. Reading files that are opened in read or execute modes does not cause record locking to
occur because records cannot be updated in these two modes.

A subtle but nasty problem exists for programs that interrogate a data base and occasionally update its data.
When a user looks up a particular record, the record could be locked out indefinitely if the program
neglects to release it. The problem is characteristic of record locking systems; you can avoid it by careful
programming.

NOTE: Only one portion of a file may be locked out at one time. If an application requires more than
one record to be locked out, multiple paths to the same file may be opened with each path having its own
record locked out. RBF notices that the same process owns both paths and keeps them from locking each
other out. Alternatively, the entire file may be locked out, the records updated, and the file released.

OS-9 File System Non-Sharable Files

OS-9 Technical Manual 7-9

Non-sharable Files

You may use file locking when an entire file is considered unsafe for use by more than one user. On rare
occasions, you need to create a non-sharable file. A non-sharable file can never be accessed by more than
one process at a time. Make a file non-sharable by setting the single user (S) bit in the file’s attribute byte.
You can set the bit when you create the file, or later using the attr utility.

If the single-user bit is set, only one process may open the file at a time. If another process attempts to
open the file, error (#253) is returned.

More commonly, a file needs to be non-sharable only during the execution of a specific program.
Accomplish this by opening the file with the single-user bit set in the access mode parameter.

For example, if a file is opened as a non-sharable file, when it is being sorted it is treated as though it had
a single-user attribute. If the file was already opened by another process, an error (#253) is returned.

A necessary quirk of non-sharable files is that they may be duplicated using the I$Dup system call, or
inherited. A non-sharable file could therefore actually become accessible to more than one process at a
time. Non-sharable only means that the file may be opened once. It is usually a very bad idea to have two
processes actively using any disk file through the same (inherited) path.

End of File Lock

An EOF lock occurs when the user reads or writes data at the end of file. The user keeps the end of file
locked until a read or write is performed that is not at the end of the file. EOF lock is the only time that a
write call automatically causes lock out of any part of the file. This avoids problems that could occur when
two users try to simultaneously extend a file.

An extremely useful side effect occurs when a program creates a file for sequential output. As soon as the
file is created, EOF lock is gained, and no other process is able to pass the writer in processing the file.

For example, if you redirect an assembly listing to a disk file, a spooler utility can open and begin listing
the file before the assembler has written even the first line of output. Record locking always keeps the
spooler one step behind the assembler, making the listing come out as desired.

Deadlock Detection

A deadlock can occur when two processes attempt to gain control of the same two disk areas
simultaneously. If each process gets one area (locking out the other process), both processes are stuck
permanently, waiting for a segment that can never become free. This situation is a general problem that
is not restricted to any particular record locking method or operating system.

Deadlock Detection OS-9 File System

7-10 OS-9 Technical Manual

If this occurs, a deadlock error (#254) is returned to the process that caused it to be detected. It is easy to
create programs that, when executed concurrently, generate lots of deadlock errors. The easiest way to
avoid them is to access records of shared files in the same sequences in all processes that may be run
simultaneously. For example, always read the index file before the data file, never the other way around.

When a deadlock error does occur, it is not sufficient for a program to simply re-try the operation in error.
If all processes used this strategy, none would ever succeed. At least one process must release its control
over a requested segment for any to proceed.

OS-9 File System Record Locking Details for I/O Functions

OS-9 Technical Manual 7-11

Record Locking Details for I/O Functions

Open/Create: The most important guideline to follow when opening files is: Do not open a file for
update if you only intend to read. Files open for read only do not cause records to be
locked out, and they generally help the system to run faster. If shared files are
routinely opened for update on a multi-user system, users can become hopelessly
record-locked for extended periods of time.

Use the special “@” file in update mode with extreme care. To keep system overhead
low, record locking routines only check for conflicts on paths opened for the same
file. The “@” file is considered different from any other file, and therefore only
conforms to record lockouts with other users of the “@” file.

Read/ReadLine: Read and ReadLine cause lock out of records only if the file is open in update mode.
The locked out area includes all bytes starting with the current file pointer and
extending for the number of bytes requested.

For example, if you make a ReadLine call for 256 bytes, exactly 256 bytes are locked
out, regardless of how many bytes are actually read before a carriage return is
encountered. EOF lock occurs if the bytes requested include the current end-of-file.

A record remains locked until any of the following occur:

• Another read is performed

• A write is performed

• The file is closed

• A record lock SetStat is issued

Releasing a record does not normally release EOF lock. Any read or write of zero
bytes releases any record lock, EOF lock, or File lock.

Write/WriteLine: Write calls always release any record that is locked out. In addition, a write of zero
bytes releases EOF lock and File lock. Writing usually does not lock out any portion
of the file unless it occurs at end of file when it will gain EOF lock.

Seek: Seek does not effect record locking.

SetStatus: There are two SetStat codes to deal with record locking: SS_Lock locks or releases
part of a file. SS_Ticks sets the length of time a program will wait for a locked
record. See the I$SetStat entry in OS-9 System Calls (chapter 2) for a description
of the codes.

File Security OS-9 File System

7-12 OS-9 Technical Manual

File Security

Each file has a group/user ID that identifies the file’s owner. These are copied from the current process
descriptor when the file is created. Usually, a file’s owner ID is not changed.

An attribute byte is also specified when a file is created. The file’s attribute byte tells RBF in which modes
the file may be accessed. Together with the file’s owner ID, the attribute byte provides (some) file
security.

The attribute byte has two sets of bits to indicate whether a file may be opened for read, write, or execute
by the owner or the public. In this context, the file’s owner is any user with the same group ID as the file’s
creator. Public means any user with a different group ID.

Whenever a file is opened, access permissions are checked on all directories specified in the pathlist, as
well as the file itself. If you do not have permission to read a directory, you may not read any files in that
directory.

Any super-user (a user with group ID of zero) may access any file in the system. Files owned by the super-
user cannot be accessed by users of any other group unless specific access permissions are set. Files
containing modules owned by the super-user must also be owned by the super-user. If not, the modules
contained within the file are not loaded.

CAVEAT: The system manager should exercise caution when assigning group/user IDs. The RBF File
Descriptor stores the group/user ID in a two byte field (FD_OWN). The group/user ID that resides in the
password file is permitted two bytes for the group ID and two bytes for the user ID. RBF only reads the
low order byte of both the group and user ID. Consequently, a user with the ID of 256.512 is mistaken for
the super user by RBF.

End of Chapter 7

OS-9 File System NOTES

OS-9 Technical Manual 7-13

NOTES

OS-9 Technical Manual A - 1

Use the examples in this section as guides in creating your own modules; they should not be considered
the most current software. Software for your individual system may be different.

Init Module

Microware OS-9/68020 Resident Macro Assembler V2.9 90/09/10 19:55 Page 1
Init: OS-9 Configuration Module -
00001 nam Init: OS-9 Configuration Module
00048 *
00049 00000016 Edition equ 22 current edition number
00050
00051 00000c00 Typ_Lang set (Systm<<8)+0
00052 00008000 Attr_Rev set (ReEnt<<8)+0
00053 psect init,Typ_Lang,Attr_Rev,Edition,0,0
00054
00055 * Configuration constants (default; changable in "systype.d" file)
00056 *
00057 * Constants that use VALUES (e.g. CPUTyp set 68020) may appear anywhere
00058 * in the "systype.d" file.
00059 * Constants that use LABELS (e.g. Compat set ZapMem) MUST appear OUTSIDE
00060 * the CONFIG macro and must be conditionalized such that they are
00061 * only invoked when this file (init.a) is being assembled.
00062 * If they are placed inside the CONFIG macro, then the over-ride will not
00063 * take effect.
00064 * If they are placed outside the macro and not conditionalized then
00065 * "illegal external reference" errors will result when making other files.
00066 * The label _INITMOD provides the mechanism to ensure that the desired
00067 * operations will result.
00068 *
00069 * example systype.d setup:
00070 *

Example Code

Init Module Example Code

A - 2 OS-9 Technical Manual

00071 * CONFIG macro
00072 * <body of macro>
00073 * endm
00074 * Slice set 10
00075 * ifdef _INITMOD
00076 * Compat set ZapMem patternize memory
00077 * endc
00078 *
00079
00080 * flag reading init module (so that local labels can be over-ridden)
00081 00000001 _INITMOD equ 1 flag reading init module
00082
00083 000109a0 CPUTyp set 68000 cpu type (68008/68000/68010/etc.)
00084 00000001 Level set 1 OS-9 Level One
00085 00000002 Vers set 2 Version 2.4
00086 00000004 Revis set 4
00087 00000001 Edit set 1 Edition
00088 00000000 IP_ID set 0 interprocessor identification code
00089 00000000 Site set 0 installation site code
00090 00000080 MDirSz set 128 initial mod directory size (unused)
00091 00000020 PollSz set 32 IRQ polling table size (fixed)
00092 00000020 DevCnt set 32 device table size (fixed)
00093 00000040 Procs set 64 initial process table size
00094 00000040 Paths set 64 initial path table size
00095 00000002 Slice set 2 ticks per time slice
00096 00000080 SysPri set 128 initial system priority
00097 00000000 MinPty set 0 initial sys min executable priority
00098 00000000 MaxAge set 0 initial sys max natural age limit
00099 00000000 MaxMem set 0 top of RAM (unused)
00100 00000000 Events set 0 initial event table size (div by 8)
00101 00000000 Compat set 0 version smoothing byte
00102 00000400 StackSz set 1024 IRQ Stack Size in bytes (must be 1k
 <= StackSz < 256k)
00103 00000000 ColdRetrys set 0 number of retries for coldstart’s
 "chd" before failing
00104
00105 * Compat flag bit definitions
00106 00000001 SlowIRQ equ 1 save all regs during IRQ processing
00107 00000002 NoStop equ 1<<1 don’t use ’stop’ instruction
00108 00000004 NoGhost equ 1<<2 don’t retain Sticky memory modules
00109 00000008 NoBurst equ 1<<3 don’t enable 68030 cache burst mode
00110 00000010 ZapMem equ 1<<4 wipe out mem that is allocated/freed
00111 00000020 NoClock equ 1<<5 don’t start sys clock during coldstart
00112
00113 * Compat2 flag bit definitions
00114 00000001 ExtC_I equ 1<<0 ext instruction cache is coherent
00115 00000002 ExtC_D equ 1<<1 external data cache is coherent
00116 00000004 OnC_I equ 1<<2 on-chip inst cache is coherent
00117 00000008 OnC_D equ 1<<3 on-chip data cache is coherent
00118 00000080 DDIO equ 1<<7 don’t disable data caching when in I/O
00119
00120 use defsfile (any above defs may be overridden in
 defsfile)
00001
00002 use ../DEFS/oskdefs.d

Example Code Init Module

OS-9 Technical Manual A - 3

00001 opt -l
00003 use ./systype.d
00001 *
00002 * System Definitions for MVME147 System
00003 *
00004 * VERSION FOR DELTA
00005 opt -l
00004
00005
00121
00132
00133 * Configuration module body
00134 0000 0000 dc.l MaxMem (unused)
00135 0004 0020 dc.w PollSz IRQ polling table
00136 0006 0020 dc.w DevCnt device table size
00137 0008 0040 dc.w Procs initial process table size
00138 000a 0040 dc.w Paths initial path table size
00139 000c 0076 dc.w SysParam param string for first executable mod
00140 000e 0070 dc.w SysStart first executable module name offset
00141 0010 008b dc.w SysDev system default device name offset
00142 0012 008f dc.w ConsolNm standard I/O pathlist name offset
00143 0014 009b dc.w Extens Customization module name offset
00144 0016 0095 dc.w ClockNm clock module name offset
00145 0018 0014 dc.w Slice number of ticks per time slice
00146 001a 0000 dc.w IP_ID interprocessor identification
00147 001c 0000 dc.l Site installation site code
00148 0020 0062 dc.w MainFram installation name offset
00149 0022 0001 dc.l CPUTyp specific 68000 family proc in use
00150 0026 0102 dc.b Level,Vers,Revis,Edit OS-9 Level
00151 002a 0054 dc.w OS9Rev OS-9 revision string offset
00152 002c 0080 dc.w SysPri initial system priority
00153 002e 0000 dc.w MinPty initial sys min executable priority
00154 0030 0000 dc.w MaxAge maximum system natural age limit
00155 0032 0000 dc.l MDirSz module directory size (unused)
00156 0036 0000 dc.w Events initial event table size (no.r of
 entries)
00157 0038 10 dc.b Compat version change smooth byte
00158 0039 83 dc.b Compat2 version change smooth byte #2
00159 003a 00b6 dc.w MemList memory definitions
00160 003c 0400 dc.w StackSz/4 IRQ stack size (in longwords)
00161 003e 0000 dc.w ColdRetrys coldstart’s "chd" retry count
00162 0040 0000 dc.w 0,0,0,0,0 reserved
00163 004a 0000 dc.w 0,0,0,0,0 reserved
00164
00165 * Configuration name strings
00166 0054 4f53 OS9Rev dc.b "OS-9/68K V",Vers+’0’,".",Revis+’0’,0
00167
00168 * The remaining names are defined in the "systype.d" macro
00169 CONFIG
00170 0062 4465+MainFram dc.b "Delta MVME147",0
00172 0070 7368+SysStart dc.b "shell",0 name of initial module to execute
00173 0076=7461+SysParam dc.b "tapestart; ex sysgo",C$CR,0
Init: OS-9 Configuration Module -

Init Module Example Code

A - 4 OS-9 Technical Manual

00174 008b 2f64+SysDev dc.b "/dd",0 initial system disk pathlist
00184 008f 2f74+ConsolNm dc.b "/term",0 console terminal pathlist
00185 0095 746b+ClockNm dc.b "tk147",0 clock module name
00186 009b 4f53+Extens dc.b "OS9P2 ssm syscache" include mmu, caching.
00188 00b5 00+ dc.b 0
00189 000000b6+ align
00190 +MemList
00191 MemType SYSRAM,250,B_USER,ProbeSize,CPUBeg,BootMemEnd,OnBoard,CPUBeg+TRANS
00192 00b6=0000+ dc.w SYSRAM,250,B_USER,ProbeSize>>4 type, priority,
 access, search block size
00193 00be 0000+ dc.l CPUBeg,BootMemEnd low, high limits (where it
 appears on local address bus)
00194 00c6 00fa+ dc.w OnBoard,0 offset to description string
 (zero if none), reserved
00195 00ca 0000+ dc.l CPUBeg+TRANS,0,0 address translation adjustment
 (for DMA, etc.), reserved
00199 MemType SYSRAM,240,B_USER+B_PARITY,ProbeSize,BootMemEnd,UserMemEnd,OffBoard,0
00200 00d6=0000+ dc.w SYSRAM,240,B_USER+B_PARITY,ProbeSize>>4 type,
 priority, access, search block size
00201 00de 0040+ dc.l BootMemEnd,UserMemEnd low, high limits (where it
 appears on local address bus)
00202 00e6 0107+ dc.w OffBoard,0 offset to description string
 (zero if none), reserved
00203 00ea 0000+ dc.l 0,0,0 address translation adjustment
 (for DMA, etc.), reserved
00207 00f6 0000+ dc.l 0 terminate list
00208 00fa 6f6e+OnBoard dc.b "on-board ram",0
00209 0107 766d+OffBoard dc.b "vme bus ram",0
00210
00214
00218
00219 * define default caching modes (CPUTyp and system specific)
00220 * NOTE: the following rules should be applied in determining
00221 * the "coherency" of a cache and setting up the Compat2
00222 * cache function flags:
00223 *
00224 * - if the cache does not exits, then it is always coherent.
00225 * - the on-chip cache coherency is not changable, except
00226 * for the 68040. If a 68040 system is used with
00227 * bus-snooping disabled, then that fact should be registered
00228 * by the user defining the label NoSnoop040 in their local
00229 * "systype.d" file.
00230 * - the coherency of external caches is indicated by the
00231 * SnoopExt definition. If the external caches are
00232 * coherent or non-existant, then the label SnoopExt
00233 * should be defined in "systype.d".
00234 * - the kernel will disable data caching when calling a file
00235 * manager, unless the "NoDataDis" label is defined.
00236 * Disabling data caching is required for systems that have
00237 * drivers that use dma and don’t perform any explicit data
00238 * cache flushing. If your system does NOT use dma drivers,
00239 * or the drivers care for the cache, then the NoDataDis
00240 * label should be defined in "systype.d".
00241 *

Example Code Init Module

OS-9 Technical Manual A - 5

00243
00246 * external caches are coherent or absent
00247 00000003 ExtCache equ ExtC_I!ExtC_D
00252
00261 00000003 Compat2 set ExtCache 68030 on-chip caches are NOT snoopy
00270
00271 * add "don’t disable data cache when in I/O" to Compat2
00273 00000083 Compat2 set Compat2!DDIO
00275
00277
00278 00000114 ends
Errors: 00000
Memory used: 45k
Elapsed time: 6 second(s)

Sysgo Module Example Code

A - 6 OS-9 Technical Manual

Sysgo Module

Microware OS-9/68000 Resident Macro Assembler V1.6 86/11/04 Page 1 sysgo.a
Sysgo - OS-9/68000 Initial (startup) module
00001 nam Sysgo
00002 ttl OS-9/68000 Initial (startup) module
00003
00015 00000004 Edition equ 4 current edition number
00016
00017 00000101 Typ_Lang set (Prgrm<<8)+Objct
00018 00000000 Attr_Rev set 0 (non-re- entrant)
00019 psect sysgo,Typ_Lang,Attr_Rev,Edition,128,Entry
00020
00021 use defsfile
00022
00023 vsect
00024 00000000 ds.b 255 stack space
00025 00000000 ends
00026
00027 0000=4e40 Intercpt os9 F$RTE return from intercept
00028
00029 0004 41fa Entry lea Intercpt(pc),a0
00030 0008=4e40 os9 F$Icpt
00031 000c 41fa lea CmdStr(pc),a0 default execution dir ptr
00032 0010 7004 moveq #Exec_,d0 execution mode
00033 0012=4e40 os9 I$ChgDir chg exec dir (ignore errs)
00034 0016 640c bcc.s Entry10 continue if no error
00035 0018 7001 moveq #1,d0 std output path
00036 001a 721a moveq #ChdErrSz,d1 size
00037 001c 41fa lea ChdErrMs(pc),a0 "Help, I can’t find CMDS"
00038 0020=4e40 os9 I$WritLn output error message
00039
00040 * Process startup file
00041 0024 7000 Entry10 moveq #0,d0 std input path
00042 0026=4e40 os9 I$Dup clone it
00043 002a 3e00 move.w d0,d7 save cloned path number
00044 002c 7000 moveq #0,d0 std input path
00045 002e=4e40 os9 I$Close
00046 0032 303c move.w #Read_,d0
00047 0036 41fa lea Startup(pcr),a0 "startup" pathlist
00048 003a=4e40 os9 I$Open open startup file
00049 003e 640e bcc.s Entry15 continue if no error
00050 0040 7001 moveq #1,d0 std output path
00051 0042 7220 moveq #StarErSz,d1 size of startup error msg
00052 0044 41fa lea StarErMs(pc),a0 "Can’t find ’startup’"
00053 0048=4e40 os9 I$WritLn output error message
00054 004c 6032 bra.s Entry25
00055
00056 004e 7000 Entry15 moveq #0,d0 any type module
00057 0050 7200 moveq #0,d1 no add’l default mem size
00058 0052 7406 moveq #StartPSz,d2 sz of startup shell params
00059 0054 7603 moveq #3,d3 copy three std I/O paths
00060 0056 7800 moveq #0,d4 same priority
00061 0058 41fa lea ShellStr(pcr),a0 shell name

Example Code Sysgo Module

OS-9 Technical Manual A - 7

00062 005c 43fa lea StartPrm(pcr),a1 initial parameters
00063 0060=4e40 os9 F$Fork fork shell
00064 0064 6410 bcc.s Entry20 continue if no error
00065 0066 7001 moveq #1,d0 std output path
00066 0068 7219 moveq #FrkErrSz,d1 size
00067 006a 41fa lea FrkErrMs(pc),a0 "oh no, can’t fork Shell"
00068 006e=4e40 os9 I$WritLn output error message
00069 0072=4e40 os9 F$SysDbg crash system
00070
00071 0076=4e40 Entry20 os9 F$Wait wait for death,ignore error
00072 007a 7000 moveq #0,d0 std input path
00073 007c=4e40 os9 I$Close close redirected "startup"
00074 0080 3007 Entry25 move.w d7,d0
00075 0082=4e40 os9 I$Dup restore original std input
00076 0086 3007 move.w d7,d0
00077 0088=4e40 os9 I$Close remove cloned path
00078
00079 008c 7000 Loop moveq #0,d0 any type module
00080 008e 7200 moveq #0,d1 default memory size
00081 0090 7401 moveq #1,d2 one parameter byte (CR)
00082 0092 7603 moveq #3,d3 copy std I/O paths
00083 0094 7800 moveq #0,d4 same priority
00084 0096 41fa lea ShellStr(pcr),a0 shell name
00085 009a 43fa lea CRChar(pcr),a1 null paramter string
00086 009e=4e40 os9 F$Fork fork shell
00087 00a2 650a bcs.s ForkErr abort if error
00088 00a4=4e40 os9 F$Wait wait for it to die
00089 00a8 6504 bcs.s ForkErr
00090 00aa 4a41 tst.w d1 zero status?
00091 00ac 67de beq.s Loop loop if so
00092 00ae=4e40 ForkErr os9 F$PErr print error message
00093 00b2 60d8 bra.s Loop
00094
00095 00b4 7368 ShellStr dc.b "shell",0
00096 00ba=5379 FrkErrMs dc.b "Sysgo can’t fork ’shell’",C$CR
00097 00000019 FrkErrSz equ *-FrkErrMs
00098
00099 00d3 434d CmdStr dc.b "CMDS",0
00100 00d8=5379 ChdErrMs dc.b "Sysgo can’t chx to ’CMDS’",C$CR
00101 0000001a ChdErrSz equ *-ChdErrMs
00102
00103 00f2 7374 Startup dc.b "startup",0
00104 00fa=5379 StarErMs dc.b "Sysgo can’t open ’startup’ file",C$CR
00105 00000020 StarErSz equ *-StarErMs
00106
00107 011a 2d6e StartPrm dc.b "-npxt"
00108 011f= 00 CRChar dc.b C$CR
00109 00000006 StartPSz equ *-StartPrm
00110 00000120 ends
00111
Errors: 00000
Memory used: 31k
Elapsed time: 21 second(s)

Signals: Example Program Example Code

A - 8 OS-9 Technical Manual

Signals: Example Program

The following program demonstrates a subroutine that reads a \n terminated string from a terminal with a
ten second timeout between the characters. This program is designed to illustrate signal usage; it does not
contain any error checking.

The _ss_ssig(path, value) library call notifies that operating system to send the calling process a signal
with signal code value when data is available on path. If data is already pending, a signal is sent
immediately. Otherwise, control returns to the calling program and the signal is sent when data arrives.

#include <stdio.h>
#include <errno.h>

#define TRUE 1
#define FALSE 0

#define GOT_CHAR 2001
short dataready; /* flag to show that signal was received */

/* sighand - signal handling routine for this process */
sighand(signal)
register int signal;
{
 switch(signal) {
 /* ^E or ^C? */
 case 2:
 case 3:
 _errmsg(0,"termination signal received\n");
 exit(signal);
 /* Signal we’re looking for? */
 case GOT_CHAR:
 dataready = TRUE;
 break;
 /* Anything else? */
 default:
 _errmsg(0,"unknown signal received ==> %d\n",signal);
 exit(1);
 }
}

main()
{
 char buffer[256]; /* buffer for typed-in string */

 intercept(sighand); /* set up signal handler */

 printf("Enter a string:\n"); /* prompt user */

 /* call timed_read, returns TRUE if no timeout, -1 if timeout */
 if (timed_read(buffer) == TRUE)
 printf("Entered string = %s\n",buffer);
 else

Example Code Signals: Example Program

OS-9 Technical Manual A - 9

 printf("\nType faster next time!\n");
}

int timed_read(buffer)
register char *buffer;
{
 char c = ’\0’; /* 1 character buffer for read */
 short timeout = FALSE; /* flag to note timeout occurred on read */
 int pos = 0; /* position holder in buffer */

 /* loop until <return> entered or timeout occurs */
 while ((c != ’\n’) && (timeout == FALSE)) {
 sigmask(1); /* mask signals for signal setup */
 _ss_ssig(0,GOT_CHAR); /* set up to have signal sent */
 sleep(10); /* sleep for 10 seconds or until signal */

/* NOTE: we had to mask signals before doing _ss_ssig() so we did not get the
signal between the time we _ss_ssig()’ed and went to sleep. */

 /* Now we’re awake, determine what happened */
 if (!dataready)
 timeout = TRUE;
 else {
 read(0,&c,1); /* read the ready byte */
 buffer[pos] = c; /* put it in the buffer */
 pos++; /* move our position holder */
 dataready = FALSE; /* mark data as read */
 }
 }
 /* loop has terminated, figure out why */
 if (timeout)
 return -1; /* there was a timeout so return -1 */
 else {
 buffer[pos] = ’\0’; /* null terminate the string */
 return TRUE;
 }
}

#asm
* C binding for sigmask(value)
sigmask: move.l d1,-(sp) save d1 on the stack
 move.l d0,d1 get the passed parameter in the right place
 clr.l d0 make d0 = 0
 os9 F$SigMask make the system call to mask signals
 bcc.s ret if no error...
 move.l #-1,d0 return -1 to user
 move.l d1,errno(a6) fill errno with error number
ret move.l (sp)+,d1 restore d1 from the stack
 rts return to user
#endasm

Alarms: Example Program Example Code

A - 10 OS-9 Technical Manual

Alarms: Example Program

Compile the following example program with this command:

$ cc deton.c

The complete source code for the example program is as follows:

/*--|
| Psect Name:deton.c |
| Function: demonstrate alarm to time out user input |
|--*/
@_sysedit: equ 1

#include <stdio.h>
#include <errno.h>

#define TIME(secs) ((secs << 8) | 0x80000000)
#define PASSWORD "Ripley"

/*--*/
sighand(sigcode)
{
 /* just ignore the signal */
}

/*--*/
main(argc,argv)
int argc;
char **argv;
{
 register int secs = 0;
 register int alarm_id;
 register char *p;
 register char name[80];

 intercept(sighand);
 while (--argc)
 if (*(p = *(++argv)) == ’-’) {
 if (*(++p) == ’?’)
 printuse();
 else exit(_errmsg(1, "error: unknown option - ’%c’\n", *p));
 } else if (secs == 0)
 secs = atoi(p);
 else exit(_errmsg(1, "unknown arg - \"%s\"\n", p));

 secs = secs ? secs : 3;
 printf("You have %d seconds to terminate self-destruct...\n", secs);

 /* set alarm to time out user input */
 if ((alarm_id = alm_set(2, TIME(secs))) == -1)
 exit(_errmsg(errno, "can’t set alarm - "));

Example Code Alarms: Example Program

OS-9 Technical Manual A - 11

 if (gets(name) != 0)
 alm_delete(alarm_id); /* remove the alarm; it didn’t expire */
 else printf("\n");

 if (_cmpnam(name, PASSWORD, 6) == 0)
 printf("Have a nice day, %s.\n", PASSWORD);
 else printf("ka BOOM\n");

 exit(0);
}

/*--*/
/* printuse() - print help text to standard error */
printuse()
{
 fprintf(stderr, "syntax: %s [seconds]\n", _prgname());
 fprintf(stderr, "function: demonstrate use of alarm to time out I/O\n");
 fprintf(stderr, "options: none\n");
 exit(0);
}

Events: Example Program Example Code

A - 12 OS-9 Technical Manual

Events: Example Program

The following program uses a binary semaphore to illustrate the use of events. To execute this example:

• Type the code into a file called sema1.c.

• Copy sema1.c to sema2.c.

• Compile both programs.

• Run both programs with this command: sema1 & sema2

The program creates an event with an initial value of 1 (free), a wait increment of -1, and a signal increment
of 1. Then, the program enters a loop which waits on the event, prints a message, sleeps, and signals the
event. After ten times through the loop, the program unlinks itself from the event and deletes the event
from the system.

#include <stdio.h>
#include <events.h>
#include <errno.h>

char *ev_name = "semaevent"; /* name of event to be used */
int ev_id; /* id that will be used to access event */

main()
{
 int count = 0; /* loop counter */

 /* create or link to the event */
 if ((ev_id = _ev_link(ev_name)) == -1)
 if ((ev_id = _ev_creat(1,-1,1,ev_name)) == -1)
 exit(_errmsg(errno,"error getting access to event - "));

 while (count++ < 10) {
 /* wait on the event */
 if (_ev_wait(ev_id, 1, 1) == -1)
 exit(_errmsg(errno,"error waiting on the event - "));

 _errmsg(0,"entering \"critical section\"\n");

 /* simulate doing something useful */
 sleep(2);

 _errmsg(0,"exiting \"critical section\"\n");

 /* signal event (leaving critical section) */
 if (_ev_signal(ev_id, 0) == -1)
 exit(_errmsg(errno,"error signalling the event - "));

 /* simulate doing something other than critical section */
 sleep(1);
 }

Example Code Events: Example Program

OS-9 Technical Manual A - 13

 /* unlink from event */
 if (_ev_unlink(ev_id) == -1)
 exit(_errmsg(errno,"error unlinking from event - "));

 /* delete event from system if this was the last process to unlink from it */
 if (_ev_delete(ev_name) == -1 && errno != E_EVBUSY)
 exit(_errmsg(errno,"error deleting event from system - "));

 _errmsg(0,"terminating normally\n");
}

C Trap Handler Example Code

A - 14 OS-9 Technical Manual

C Trap Handler

Use the following makefile to make the example C trap handler and test programs:

makefile - Used to make the example C trap handler and test program.

CFLAGS = -sqgixt=/dd
RDIR = RELS
TRAP = ctrap
TEST = traptst

Dependencies for making the entire example.

ctrap.example: $(TRAP) $(TEST)
 touch ctrap.example

Dependencies for making the ctrap trap handler.

$(TRAP): tstart.r $(TRAP).r
 chd $(RDIR);\
 l68 tstart.r $(TRAP).r -l=/dd/lib/cio.l -l=/dd/lib/clib.l -l=/dd/lib/sys.l\
 -o=$(TRAP) -g

Dependencies for making the traptst test program.

$(TEST): $(TEST).r

$(TEST).r: $(TEST).c
 cc -gim=2k $(TEST).c -r=$(RDIR)

The complete source for the C trap handler startup routines (tstart.a) is as follows:

*
* tstart.a - C trap handler startup routines.
*
 nam tstart C trap handler interface
 use /dd/defs/oskdefs.d

*SYSTRAP equ 1 define if trap should execute in system state

MaxParams equ 20 maximum number of "C" style parameters allowed

 ifdef SYSTRAP
AttrRevs set (ReEnt+SupStat)<<8 (system state)
 else
AttrRevs set (ReEnt)<<8 (user state)
 endc

TypeLang set (TrapLib<<8)+Objct
 psect traphand,TypeLang,AttrRevs,0,0,TrapEnt
 dc.l TrapInit
 dc.l TrapTerm

Example Code C Trap Handler

OS-9 Technical Manual A - 15

* Subroutine TrapInit
* Trap handler initialization entry point
*
* Passed: d0.w = User Trap number (1-15)
* d1.l = (optional) additional static storage
* d2-d7 = caller’s registers at time of trap
* (a0) = trap handler module name pointer
* (a1) = trap handler execution entry point
* (a2) = trap module pointer
* a3-a5 = caller’s registers at time of trap
* (a6) = trap handler static storage pointer
* (a7) = trap init stack frame pointer
*
* Returns: d0.l = "C" trapinit return value
* (a0) = updated trap handler name pointer
* (a1) = trap handler execution entry point
* (a2) = trap module pointer
* cc = carry set, d1.w = error code if error
* Other values returned are dependent on the trap handler
*
* The user stack looks like this:
* .-------------------------.
* +8 | caller’s return PC |
* |------------+------------|
* +4 | 0000 | 0000 |
* |------------|------------|
* | caller’s a6 register |
* (usp)-> -------------------------
*
* NOTE: In system state, (a7)=system stack pointer. This has a reasonable
* amount of stack space (~1K). No assumptions about where it is
* should be made.

TrapInit: bra TrapEnt call "C" trap handler (with func. code zero)

* Subroutine TrapEnt
* User Trap entry point
*
* Passed: d0-d7 = caller’s registers
* a0-a5 = caller’s registers
* (a6) = trap handler static storage pointer
* (a7) = trap entry stack frame pointer
* usp = undisturbed user stack (in system state)
*
* Returns: cc = carry set, d1.w=error code if error
* Other values returned are dependent on the trap handler
*
* The system stack looks like this:
* .-------------------------.
* +8 | caller’s return PC |
* |-------------+-----------

C Trap Handler Example Code

A - 16 OS-9 Technical Manual

* +6 | vector # |
* |-------------|
* +4 | func code |
* |-------------+-----------.
* | caller’s (a6) register |
* (a7)-> -------------------------

 org 0 stack offset definitions
S_CParams do.l MaxParams
S_a0 do.l 1 caller’s a0 reg
S_a1 do.l 1 caller’s a1 reg
S_a6 do.l 1 caller’s a6 reg
S_func do.w 1 trap function code
S_vect do.w 1 user trap exception offset
S_cleanup equ .
S_pc do.l 1 return pc

TrapEnt: movem.l a0-a1,-(a7) save regs
 lea -MaxParams*4(a7),a7 allocate parameter space
 lea S_CParams(a7),a1 ptr to C parameter area

 ifdef SYSTRAP
 move usp,a0 caller’s parameters are on user stack ptr
 adda.l #12,a0 above two rts pc’s
 else
 lea S_pc+16(a7),a0 caller’s remaining C parameters ptr
 endc

 moveq #MaxParams-1,d1 number of (potential) parameters
Trap10 move.l (a0)+,(a1)+ copy caller’s params from user stack
 dbra d1,Trap10
 moveq #0,d0 sweep reg
 move.w S_func(a7),d0 1st param = func
 move.l S_a6(a7),d1 2nd param = caller’s (a6)
 bsr ctrap execute C traphandler
Trap90 movea.l S_a6(a7),a6 restore caller’s a6
 lea S_cleanup(a7),a7 discard scratch
 rts return to user program

* Subroutine TrapTerm
* Terminate trap handler servicing.
*
* As of this release (OS-9 V2.3) the trap termination entry point
* is never called by the OS-9 kernel. Documentation details will
* be available when a working implementation exists.

TrapTerm: move.w #1<<8+199,d1 never called; so if it gets here...
 OS9 F$Exit crash program (Error 001:199)

 ends

Example Code C Trap Handler

OS-9 Technical Manual A - 17

The complete source for the example C trap handler library (ctrap.c) is as follows:

/***
 *
 * ctrap.c - Example C trap handler library.
 *
 * ctrap(func, a6, p1, p2, ...)
 */

int ctrap(func, a6, p1, p2, p3, p4)
register int func; /* trap function code */
char *a6; /* caller’s static storage base */
unsigned int p1, p2, p3, p4; /* caller’s parameters */
{
 register int result;

 switch(func)
 {
 case 0 : result = 0; break; /* tlink call */
 case ’+’: result = p1 + p2; break;
 case ’-’: result = p1 - p2; break;
 case ’*’: result = p1 * p2; break;
 case ’/’: result = p1 / p2; break;
 case ’&’: result = p1 & p2; break;
 case ’|’: result = p1 | p2; break;
 case ’^’: result = p1 ^ p2; break;
 case ’>’: result = p1 >> p2; break;
 case ’<’: result = p1 << p2; break;
 default : result = -1; break;
 }
 return (result);
}

C Trap Handler Example Code

A - 18 OS-9 Technical Manual

The complete source for traptst.c, which calls the ctrap handler, is as follows:

/***
 *
 * traptst.c - Calls the "ctrap" trap handler.
 *
 */

main()
{
 int i, n;
 int x = 22;
 int y = 5;
 int trapnum = 6;
 char *operator = "+-*/&|^<>?";

 printf("tlink: %d\n", tlink(trapnum, "ctrap"));

 n = strlen (operator);
 for (i = 0; i < n; ++i)
 printf("tcall(%d %c %d) = %d\n", x, operator[i], y,
 tcall(trapnum, operator[i], x, y));
}

/* bindings for tlink, tcall */
/**/
/* tlink(trapnum, trapname) - link to trap handler */
/* int trapnum; user trap number (1-15) */
/* char *trapname; name of trap module (NULL to unlink) */

#asm
tlink: link a5,#0
 movem.l a0-a2,-(a7) save regs
 movea.l d1,a0 copy ptr to trap handler name
 moveq #0,d1 no memory override
 OS9 F$TLink link to trap handler
 bcc.s tlink99 exit if no error
 move.l d1,errno(a6) save error number for caller
 moveq #-1,d0 return error status
tlink99 movem.l (a7)+,a0-a2 restore regs
 unlk a5
 rts
#endasm

/**/
/* tcall(trapnum, func, param1, param2, ...) - call trap handler */
/* int trapnum; user trap number (1-15) */
/* short func; trap function number */
/* other parameters may be ints or pointers */

#asm
TRAP equ $4e40 user trap(0) opcode
RTS equ $4e75 rts opcode

Example Code C Trap Handler

OS-9 Technical Manual A - 19

 vsect
trapinst ds.w 2
rtsinst ds.w 1
 ends

tcall: link a5,#0
 tst.l d0 valid trap number?
 beq.s paramerr abort if not
 cmp.l #15,d0 valid trap number?
 bhi.s paramerr
 add.w #TRAP,d0
 movem.w d0-d1,trapinst(a6) build usr trap instruction
 move.w #RTS,rtsinst(a6) set rts instruction
 moveq.l #0,d0 flush instruction cache
 os9 F$CCtl ignore error
 jsr trapinst(a6) execute trap call
 bcc.s tcall99 exit if no error
 move.l d1,errno(a6) save error number
 bra.s tcallerr abort

paramerr move.l #E$Param,errno(a6)
tcallerr moveq #-1,d0
tcall99
 unlk a5
 rts
#endasm

RBF Device Descriptor Example Code

A - 20 OS-9 Technical Manual

RBF Device Descriptor

Microware OS-9/68020 Resident Macro Assembler V2.9 90/12/07 15:29 Page 1
 ../io/d0.a
D0 Device Descriptor - Device Descriptor for Floppy disk controller
00001 nam D0 Device Descriptor
00002 use defsfile
00001
00002 use ../DEFS/oskdefs.d
00001 opt -l
00003 use ./systype.d
00001 * System Definitions for MVME147 System
00002 *
00003 opt -l
00004
00005
00003 use ../io/rbfdesc.a
00001
00002 ttl Device Descriptor for Floppy disk controller
00003
00045 0000000e Edition equ 14 current edition number
00046
00047 * PD_DNS values
00048 00000000 Single equ 0 FM encoded media
00049 00000001 Double equ 1 MFM encoded media/double-track

 density
00050 00000002 Quad equ 1<<1 Quad track density
00051 00000004 Octal equ 1<<2 Octal track density
00052
00053 * PD_TYP values
00054 * Note: For pre-V2.4 Five/Eight defines the disk size, rotational
00055 * speed and data transfer rate. From V2.4 the physical size
00056 * is defined in bits 4 - 1, and PD_Rate defines the rotational
00057 * speed and data transfer rate.
00058
00059 * floppy disk definitions
00060 00000000 Five equ 0<<0 drive is 5 1/4"
00061 00000001 Eight equ 1<<0 drive is 8"
00062 00000000 SizeOld equ 0<<1 size/speed defined by

 bit 0 value (pre-V2.4)
00063 00000002 Size8 equ 1<<1 physical size is 8"
00064 00000004 Size5 equ 2<<1 physical size is 5 1/4"
00065 00000006 Size3 equ 3<<1 physical size is 3 1/2"
00066
00067 * hard disk definitions
00068 00000040 HRemov equ 1<<6 hard disk is removable
00069 00000080 Hard equ 1<<7 hard disk media
00070
00071 * PD_Rate values
00072 * Note: V2.4 drivers should derive the disk data transfer rate and
00073 * rotational speed from this field if PD_TYP, bits 4 - 1 are
00074 * non-zero. If not, then PD_TYP, bit 0 infers these.
00075 00000000 rpm300 equ 0 rotational speed is 300 rpm
00076 00000001 rpm360 equ 1 rotational speed is 360 rpm

Example Code RBF Device Descriptor

OS-9 Technical Manual A - 21

00077 00000002 rpm600 equ 2 rotational speed is 600 rpm
00078 00000000 xfr125K equ 0<<4 transfer rate is 125K bits/sec
00079 00000010 xfr250K equ 1<<4 transfer rate is 250K bits/sec

00080 00000020 xrf300K equ 2<<4 transfer rate is 300K bits/sec
00081 00000030 xfr500K equ 3<<4 transfer rate is 500K bits/sec
00082 00000040 xfr1M equ 4<<4 transfer rate is 1M bits/sec
00083 00000050 xfr2M equ 5<<4 transfer rate is 2M bits/sec
00084 00000060 xfr5M equ 6<<4 transfer rate is 5M bits/sec
00085
00086 * PD_VFY values
00087 00000001 ON equ 1 "no-verify" ON
00088 00000000 OFF equ 0 "no-verify" OFF

(i.e. verify is ON!)
00089
00090 * macro parameter #6 definitions (drive type)
00091
00092 00000001 d877 equ 1 single density 8"
00093 00000004 dd877 equ 4 double density 8"
00094 00000002 d540 equ 2 single density 5 1/4" 40 trk
00095 00000005 dd540 equ 5 double density 5 1/4" 40 trk
00096 00000003 d580 equ 3 single density 5 1/4" 80 trk
00097 00000006 dd580 equ 6 double density 5 1/4" 80 trk
00098 00000007 ramdisk equ 7 volatile ram disk
00099 00000008 nvramdisk equ 8 non-volatile ram disk
00100 00000009 uv580 equ 9 universal 5 1/4" 80 track
00101 0000000a autosize equ 10 autosize device (SS_DSize tells media size)
00102 0000000b dd380 equ 11 double density 3 1/2", 80 trk
00103 0000000c uv380 equ 12 universal 3 1/2" 80 track
00104 0000000d hd580 equ 13 double density 5 1/4"

 80 track ’8" image’
00105 0000000e ed380 equ 14 double density 3 1/2"

 80 track, 4M byte unformatted
00106 0000000f hd577 equ 15 double density 5 1/4"

 77 track ’8" image’
00107 00000010 uv577 equ 16 universal 5 1/4" ’8" image’
00108 00000011 uv877 equ 17 universal 8"
00109
00110 00000003 Density set BitDns+(TrkDns<<1)
00111 00000024 DiskType set DiskKind+(DnsTrk0<<5)
00112
00113 00000f00 TypeLang set (Devic<<8)+0
00114 00008000 Attr_Rev set (ReEnt<<8)+0
00115
00116 psect RBFDesc,TypeLang,Attr_Rev,Edition,0,0
00117
00118 0000 fffe dc.l Port port address
00119 0004 45 dc.b Vector auto-vector trap assignment
00120 0005 04 dc.b IRQLevel IRQ hardware interrupt level
00121 0006 05 dc.b Priority irq polling priority
00122 0007 a7 dc.b Mode device mode capabilities
00123 0008 0048 dc.w FileMgr file manager name offset
00124 000a 004c dc.w DevDrv device driver name offset
00125 000c 0053 dc.w DevCon (reserved)

RBF Device Descriptor Example Code

A - 22 OS-9 Technical Manual

00126 000e 0000 dc.w 0,0,0,0 reserved
00127 0016 0030 dc.w OptLen
00128
00129 * Default Parameters
00130 OptTbl
00131 0018= 00 dc.b DT_RBF device type
00132 0019 02 dc.b DrvNum drive number
00133 001a 03 dc.b StepRate step rate
00134 001b 24 dc.b DiskType type of disk 8"/5 1/4"/Hard/etc
00135 001c 03 dc.b Density Bit Density and track density
00136 001d 00 dc.b 0 reserved
00137 001e 004f dc.w Cylnders-TrkOffs number of logical cylinders
00138 0020 02 dc.b Heads Number of Sides (Floppy)

 Heads(Hard Disk)
00139 0021 00 dc.b NoVerify OFF = disk verify ON = no verify
00140 0022 0010 dc.w SectTrk default sectors/track
00141 0024 0010 dc.w SectTrk0 default sectors/track track 0
00142 0026 0008 dc.w SegAlloc segment allocation size
00143 0028 04 dc.b Intrleav sector interleave factor
00144 0029 00 dc.b DMAMode DMA mode (driver dependant)
00145 002a 01 dc.b TrkOffs track base offset (first

accessable track)
00146 002b 01 dc.b SectOffs sector base offset

(starting physical sector number)
00147 002c 0100 dc.w SectSize # of bytes/sector
00148 002e 0002 dc.w Control control byte
00149 0030 07 dc.b Trys number of retrys

 0 = no retrys/error correction
00150 0031 02 dc.b ScsiLun scsi logical unit number
00151 0032 0000 dc.w WrtPrecomp write precomp cylinder
00152 0034 0000 dc.w RedWrtCrnt reduce write current cylinder
00153 0036 0000 dc.w ParkCyl cylinder to park head

for hard disk
00154 0038 0000 dc.l LSNOffset logical sector offset
00155 003c 0050 dc.w TotalCyls total cylinders on drive
00156 003e 06 dc.b CtrlrID scsi controller id
00157 003f 10 dc.b Rates data-transfer rate &

rotational speed
00158 0040 0000 dc.l ScsiOpts scsi option flags
00159 0044 0000 dc.l MaxCount-1 maximum byte count

passable to driver
00160 00000030 OptLen equ *-OptTbl
00161
00162 0048 5242 FileMgr dc.b "RBF",0 Random block file manager

00274 DiskKind set Size5 five inch disk
00275 Cylnders set 80 number of (physical) tracks
00276 BitDns set Double MFM recording
00277 Rates set xfr250K+rpm300
00278 DnsTrk0 set Double MFM track 0
00279 TrkDns set Double 96tpi
00280 SectTrk set 16 sectors/track (except trk 0, side 0)
00281 SectTrk0 set 16 sectors/track, track 0, side 0
00282 SectOffs set 1 physical sector start = 1

Example Code RBF Device Descriptor

OS-9 Technical Manual A - 23

00283 TrkOffs set 1 track 0 not used
00284 TotalCyls set Cylnders number of actual cylinders on disk
00384
00385 ****************
00386 * Descriptor Defaults
00387 000000a7 Mode set Dir_+ISize_+Exec_+Updat_
00388 00000000 BitDns set Single
00389 00000002 Heads set 2
00390 00000002 StepRate set 2
00391 00000003 Intrleav set 3
00392 00000000 NoVerify set OFF
00393 00000000 DnsTrk0 set Single
00394 00000000 DMAMode set 0 non dma device
00395 00000008 SegAlloc set 8 minimum segment allocation size
00396 00000000 TrkOffs set 0
00397 00000000 SectOffs set 0
00398 00000100 SectSize set 256 default sector size 256 bytes.
00399 00000000 WrtPrecomp set 0 no write precomp
00400 00000000 RedWrtCrnt set 0 no reduced write current
00401 00000000 ParkCyl set 0 where to park the head for

hard disk
00402 00000000 ScsiLun set 0 scsi logical unit number
00403 00000000 CtrlrID set 0 controller id
00404 00000000 LSNOffset set 0 logical sector offset for scsi

hard disks
00405 00000000 TotalCyls set 0 number of actual cylinders

on disk
00406
00407 * scsi options flag definitions
00408
00409 00000001 scsi_atn set 1<<0 assert ATN supported
00410 00000002 scsi_target set 1<<1 target mode supported
00411 00000004 scsi_synchr set 1<<2 synchronous transfers supported
00412 00000008 scsi_parity set 1<<3 enable SCSI parity
00413
00414 00000000 ScsiOpts set 0 scsi options flags (default)
00415
00416 * device control word definitions
00417
00418 00000000 FmtEnabl set 0<<0 enable formatting
00419 00000001 FmtDsabl set 1<<0 disable formatting
00420 00000000 MultDsabl set 0<<1 disable multi-sectors
00421 00000002 MultEnabl set 1<<1 enable multi-sectors
00422 00000000 StabDsabl set 0<<2 device doesn’t have stable id
00423 00000004 StabEnabl set 1<<2 device has stable id
00424 00000000 AutoDsabl set 0<<3 device size from device

descriptor
00425 00000008 AutoEnabl set 1<<3 device tells size via SS_DSize
00426 00000000 FTrkDsabl set 0<<4 device can’t format a single track
00427 00000010 FTrkEnabl set 1<<4 device can format a single track
00428 00000000 Control set 0 descriptor control word (default)
00429
00430 00000007 Trys set 7 number of Trys
00431 00010000 MaxCount set 65536 default maximum transfer count of driver (16-bit)

RBF Device Descriptor Example Code

A - 24 OS-9 Technical Manual

00432 00000000 Rates set 0 default transfer-rate & rotational speed
00433
00434 * end of file
00435
00004 00000000 DrvNum set 0

00005 DiskD0
00006 RBFDesc SCSIBase,SCSIVect,SCSILevel,5,rb5400,uv580
00011 004c 7262+DevDrv dc.b "rb5400",0 driver module name

00107 00000004+DiskKind set Size5 five inch disk
00108 00000050+Cylnders set 80 number of (physical) tracks
00109 00000001+BitDns set Double MFM recording
00110 00000010+Rates set xfr250K+rpm300
00111 00000001+DnsTrk0 set Double MFM track 0
00112 00000001+TrkDns set Double 96tpi
00113 00000010+SectTrk set 16 sectors/track

(except trk 0, side 0)
00114 00000010+SectTrk0 set 16 sectors/track, track 0, side 0
00115 00000001+SectOffs set 1 physical sector start = 1
00116 00000001+TrkOffs set 1 track 0 not used
00117 00000050+TotalCyls set Cylnders number of actual cylinders on disk

00119
00213 00000002+DrvNum set 2 logical device number
00214 00000003+StepRate set 3 6ms step rate
00215 00000004+Intrleav set 4
00216 00000001+SectOffs set fd_base
00217 0000ff01+MaxCount set SectSize*255+1 practical max byte-count to pass
00218 00000002+Control set FmtEnabl+MultEnabl

 format enable,multi-sector i/o
00219 00000002+ScsiLun set OMTI_FD_LUN Logical unit number on controller
00220 00000006+CtrlrID set OMTI_TargID scsi id of controller
00221 0053 7363+DevCon dc.b "scsi147",0 low-level driver module
00222 0000005c ends

Example Code SCF Device Descriptor

OS-9 Technical Manual A - 25

SCF Device Descriptor

Microware OS-9/68000 Resident Macro Assembler V1.6 86/11/04 Page 1 term.a
Term - 68000 Term device descriptor module
00001 nam Term
00002 ttl 68000 Term device desc. module
00003 use defsfile
00004
00005
00006
00007
00008 use ../io/scfdesc.a
00011
00012 00000004 Edition equ 4 current edition number
00013
00014 00000f00 TypeLang set (Devic<<8)+0
00015 00008000 Attr_Rev set (ReEnt<<8)+0
00016 psect ScfDesc,TypeLang,Attr_Rev,Edition,0,0
00017
00018 0000 00fe dc.l Port port address
00019 0004 70 dc.b Vector auto-vector trap assignment
00020 0005 02 dc.b IRQLevel IRQ hardware interrupt lev.
00021 0006 53 dc.b Priority irq polling priority
00022 0007 23 dc.b Mode Device mode capabilities
00023 0008 0034 dc.w FileMgr file manager name offset
00024 000a 0038 dc.w DevDrv device driver name offset
00025 000c=0000 dc.w DevCon device constant’s offset
00026 000e 0000 dc.w 0,0,0,0 reserved
00027 0016 001c dc.w OptSiz option byte count
00028
00029 * Default Parameters
00030 Options
00031 * default
00032 * name function value
00033 * -------- ----------------- -------
00034 0018 00 dc.b DT_SCF device type SCF
00035 0019 00 dc.b upclock upcase lock OFF
00036 001a 01 dc.b bsb backspace=BS,SP,BS ON
00037 001b 00 dc.b linedel line del/bsp line OFF
00038 001c 01 dc.b autoecho full duplex ON
00039 001d 01 dc.b autolf auto line feed ON
00040 001e 00 dc.b eolnulls null count 0
00041 001f 00 dc.b pagpause end of page pause OFF
00042 0020 18 dc.b pagsize lines per page 24
00043 0021 08 dc.b C$Bsp backspace char ^H
00044 0022 18 dc.b C$Del delete line char ^X
00045 0023 0D dc.b C$CR end of record char <cr>
00046 0024 1B dc.b C$EOF end of file char ESC
00047 0025 04 dc.b C$Rprt reprint line char ^D
00048 0026 01 dc.b C$Rpet dup last line char ^A
00049 0027 17 dc.b C$Paus pause char ^W
00050 0028 03 dc.b C$Intr Keyboard Interrupt char ^C
00051 0029 05 dc.b C$Quit Keyboard Quit char ^E
00052 002a 08 dc.b C$Bsp backspace echo char ^H

SCF Device Descriptor Example Code

A - 26 OS-9 Technical Manual

00053 002b 07 dc.b C$Bell line overflow char ^G
00054 002c 00 dc.b Parity stop bits and parity none
00055 002d 0E dc.b BaudRate bits/char and baud rate none
00056 002e=0000 dc.w EchoNam offset of echo device none
00057 0030 11 dc.b C$XOn Transmit Enable char ^Q
00058 0031 13 dc.b C$XOff Transmit Disable char ^S
00059 0032 09 dc.b C$Tab tab character
00060 0033 00 dc.b tabsize tab column size
00061 0000001c OptSiz equ *-Options
00062
00063 0034 5363 FileMgr dc.b "Scf",0 file manager
00080
00081 00000023 Mode set ISize_+Updat_ default dev mode capabil.
00082
00010 00000040 ends
00011
Errors: 00000
Memory used: 31k
Elapsed time: 26 second(s)

Example Code SBF Device Descriptor

OS-9 Technical Manual A - 27

SBF Device Descriptor

Microware OS-9/68000 Resident Macro Assembler V1.9 90/12/07 15:30 Page 1
 mt0_sbviper.a
MT0 Device Descriptor - Device Descriptor for Tape controller
00001 nam MT0 Device Descriptor
00002
00003 use defsfile
00001
00002 use ../DEFS/oskdefs.d
00001 opt -l
00003 use ./systype.d
00001 * System Definitions for MVME147 System
00002 *
00003 opt -l
00004
00005
00004 use ../DEFS/sbfdesc.d
00001 ttl Device Descriptor for Tape controller
00002
00027 00000005 Edition equ 5 current edition number
00028
00029
00030 00000f00 TypeLang set (Devic<<8)+0
00031 00008000 Attr_Rev set (ReEnt<<8)+0
00032 psect SBFDesc,TypeLang,Attr_Rev,Edition,0,0
00033
00034 0000 fffe dc.l Port port address
00035 0004 45 dc.b Vector vector trap assignment
00036 0005 04 dc.b IRQLevel IRQ hardware interrupt level
00037 0006 05 dc.b Priority irq polling priority
00038 0007 67 dc.b Mode device mode capabilities
00039 0008 002c dc.w FileMgr file manager name offset
00040 000a 0030 dc.w DevDrv device driver name offset
00041 000c 0038 dc.w DevCon device constants offset
00042 000e 0000 dc.w 0,0,0,0 reserved
00043 0016 0014 dc.w OptLen
00044
00045 * Default Parameters
00046 OptTbl
00047 0018 03 dc.b 3 DT_SBF device type
00048 0019 00 dc.b DrvNum drive number
00049 001a 00 dc.b 0 reserved
00050 001b 08 dc.b NumBlks maximum number of block buffers
00051 001c 0000 dc.l BlkSize block size
00052 0020 03e8 dc.w DrvPrior driver process priority
00053 0022 00 dc.b SBFFlags file manager flags
00054 0023 00 dc.b DrivFlag driver flags
00055 0024 0000 dc.w DMAMode DMA type/usage
00056 0026 04 dc.b ScsiID controller ID on SCSI bus
00057 0027 00 dc.b ScsiLUN tape drive LUN on controller
00058 0028 0000 dc.l ScsiOpts scsi option flags
00059 00000014 OptLen equ *-OptTbl
00060

SBF Device Descriptor Example Code

A - 28 OS-9 Technical Manual

00061 002c 5342 FileMgr dc.b "SBF",0 Random block file manager
00062
00063
00064 SBFDesc macro
00065
00066 Port equ \1 Port address
00067 Vector equ \2 autovector number
00068 IRQLevel equ \3 hardware interrupt level
00069 Priority equ \4 polling priority
00070 DevDrv dc.b "\5",0 driver module name
00071 ifgt \#-5 standard device setup requested?
00072
00073
00074 endc
00075 endm
00076
00077 ****************
00078 * Descriptor Defaults

MT0 Device Descriptor - Device Descriptor for Tape controller
00079 00000067 Mode set Share_+ISize_+Exec_+Updat_
00080 *DevCon set 0
00081 00000000 Speed set 0 driver defined
00082 00000002 NumBlks set 2
00083 00002000 BlkSize set 0x2000
00084 00000100 DrvPrior set 256
00085 00000000 SBFFlags set 0
00086 00000000 DrivFlag set 0
00087 00000000 DMAMode set 0 driver defined
00088 00000000 ScsiID set 0
00089 00000000 ScsiLUN set 0
00090
00091 * scsi options flag definitions
00092
00093 00000001 scsi_atn set 1<<0 assert ATN supported
00094 00000002 scsi_target set 1<<1 target mode supported
00095 00000004 scsi_synchr set 1<<2 synchronous transfers supported
00096 00000008 scsi_parity set 1<<3 enable SCSI parity
00097 00000000 ScsiOpts set 0 scsi options flags
00098
00005
00006 * user changable device descriptor defaults
00007
00008 00000000 DrvNum set 0 drive number
00009 00000008 NumBlks set 8 number of blocks (buffered)
00010 00008000 BlkSize set 0x8000 LOGICAL block size (MUST be multiple of 512)
00011 000003e8 DrvPrior set 1000 priority of "sbf" process
00012
00013 00000045 IRQVect set 69 vector to use
00014 00000004 IRQLev set 4 hardware interrupt level
00015 00000005 IRQPrior set 5 polling priority (within vector)
00016
00017 00000004 ScsiID set 4 scsi id of viper
00018 00000000 ScsiLUN set 0 viper lun always 0.

Example Code SBF Device Descriptor

OS-9 Technical Manual A - 29

00019
00023
00024 ********************
00025 *
00026 * SBFDesc macro: port, vector, IRQlevel, IRQpriority, driver name.
00027 *
00028 SBFDesc PortAddr,IRQVect,IRQLev,IRQPrior,"sbviper"
00036 0038 7363 DevCon dc.b "scsi147",0
00037
00038 00000001 ScsiOpts set scsi_atn disconnect supported
00039 00000040 ends
00040

End of Appendix A

NOTES Example Code

A - 30 OS-9 Technical Manual

NOTES

OS-9 Technical Manual B - 1

This appendix includes the device descriptor initialization table definitions and path descriptor option
tables for RBF, SCF, SBF, and PIPEMAN type devices. Refer to Appendix A for RBF, SCF, and SBF
example device descriptors.

RBF Device Descriptor Modules

This section describes the definitions of the initialization table contained in device descriptor modules for
RBF-type devices. The table immediately follows the standard device descriptor module header fields
(see Chapter 3 for full descriptions). Figure B-1 shows a graphic representation of the table. The size of
the table is defined in the M$Opt field.

Name Description

PD_DTP Device type
This field is set to one for RBF devices. (0=SCF, 1=RBF, 2=PIPE, 3=SBF, 4=NET)

PD_DRV Drive number
Use this field to associate a one-byte logical integer with each drive that a driver/controller
handles. Number each controller’s drives 0 to n-1 (n is the maximum number of drives the
controller can handle and is set into V_NDRV by the driver’s INIT routine). This number
defines which drive table the driver and RBF access for this device. RBF uses this number
to set up the drive table pointer (PD_DTB). Prior to initializing PD_DTB, RBF verifies
that PD_DRV is valid for the driver by checking for a value less than V_NDRV in the
driver’s static storage. If not valid, RBF aborts the path open and returns an error. On
simple hardware, this logical drive number is often the same as the physical drive number.

Path Descriptors
and

Device Descriptors

RBF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 2 OS-9 Technical Manual

NAME DESCRIPTION

PD_STP Step rate
This field contains a code that sets the drive’s head-stepping rate. To reduce access time,
set the step rate to the fastest value of which the drive is capable. For floppy disks, the
following codes are commonly used:

Step Code 5" Disks 8" Disks
0 30ms 15ms
1 20ms 10ms
2 12ms 6ms
3 6ms 3ms

For hard disks, the value in this field is usually driver dependent.

PD_TYP Disk type
Defines the physical type of the disk, and indicates the revision level of the descriptor.

If bit 7 = 0, floppy disk parameters are described in bits 0-6:

bit 0: 0 = 5 1/4" floppy disk (pre-Version 2.4 of OS-9)
 1 = 8" floppy disk (pre-Version 2.4 of OS-9)

bits 1-3: 0 = (pre-Version 2.4 descriptor) Bit 0 describes type/rates.
1 = 8" physical size
2 = 5 1/4" physical size
3 = 3 1/2" physical size
4-7: Reserved

bit 4: Reserved

bit 5: 0 = Track 0, side 0, single density
1 = Track 0, side 0, double density

bit 6: Reserved

If bit 7 = 1, hard disk parameters are described in bits 0-6:

bits 0-5: Reserved

bit 6: 0 = Fixed hard disk
1 = Removable hard disk

Device Descriptor and Path Descriptor Definitions RBF Device Descriptor Modules

OS-9 Technical Manual B - 3

Name Description

PD_DNS Disk density *
The hardware density capabilities of a floppy disk drive:

bit 0: 0 = Single bit density (FM)
 1 = Double bit density (MFM)

bit 1: 1 = Double track density (96 TPI/135 TPI)

bit 2: 1 = Quad track density (192 TPI)

bit 3: 1 = Octal track density (384 TPI)

PD_CYL Number of cylinders (tracks) *
The logical number of cylinders per disk. Format uses this value, PD_SID, and PD_SCT
to determine the size of the drive. PD_CYL is often the same as the physical cylinder count
(PD_TotCyls), but can be smaller if using partitioned drives (PD_LSNOffs) or track
offsetting (PD_TOffs).

If the drive is an autosize drive (PD_Cntl), format ignores this field.

PD_SID Heads or sides *
The number of heads for a hard disk (Heads) or the number of surfaces for a floppy disk
(Sides). If the drive is an autosize drive (PD_Cntl), format ignores this field.

PD_VFY Verify flag
Indicates whether or not to verify write operations.

0 = verify disk write
1 = no verification

NOTE: Write verify operations are generally performed on floppy disks. They are not
generally performed on hard disks because of the lower soft error rate of hard disks.

PD_SCT Default sectors/track*
The number of sectors per track. If the drive is an autosize drive (PD_Cntl), format
ignores this field.

 PD_T0S Default sectors/track (track 0) *
The number of sectors per track for track 0. This may be different than PD_SCT
(depending on specific disk format). If the drive is an autosize drive (PD_Cntl), format
ignores this field.

 * These parameters are format specific.

RBF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 4 OS-9 Technical Manual

Name Description

PD_SAS Segment allocation size
The default minimum number of sectors to be allocated when a file is expanded. Typically,
this is set to the number of sectors on the media track (for example, 8 for floppy disks, 32
for hard disks), but can be adjusted to suit the requirements of the system.

PD_ILV Sector interleave factor *
The sequential arrangement of sectors on a disk (for example, 1, 2, 3... or 1, 3, 5...). For
example, if the interleave factor is 2, the sectors are arranged by 2’s (1, 3, 5...) starting at
the base sector (see PD_SOffs).

NOTE: Optimized interleaving can drastically improve I/O throughput.

NOTE: PD_ILV is typically only used when the media is formatted, as format uses this
field to determine the default interleave. However, when the media format occurs
(I$SetStat, SS_WTrk call), the desired interleave is passed in the parameters of the call.

PD_TFM DMA (Direct Memory Access) transfer mode
The mode of transfer for DMA access, if the driver is capable of handling different DMA
modes. Use of this field is driver dependent.

PD_TOffs Track base offset *
The offset to the first accessible physical track number. Track 0 is not always used as the
base track because it is often a different density.

PD_SOffs Sector base offset *
The offset to the first accessible physical sector number on a track. Sector 0 is not always
the base sector.

 * These parameters are format specific.

Device Descriptor and Path Descriptor Definitions RBF Device Descriptor Modules

OS-9 Technical Manual B - 5

Name Description

PD_SSize Sector size
Indicates the physical sector size in bytes. The default sector size is 256. Depending upon
whether the driver supports non-256 byte logical sector sizes (that is, a variable sector size
driver), the field is used as follows:

• Variable sector size driver
If the driver supports variable logical sector sizes, RBF inspects this value during a
path open (specifically, after the driver returns “no error” on the SS_VarSect
GetStat call) and uses this value as the logical sector size of the media. This value
is then copied into PD_SctSiz of the path descriptor options section, so that
application programs can know the logical sector size of the media, if required.
RBF supports logical sector sizes from 256 bytes to 32,768 bytes, in integral binary
multiples (256, 512, 1024, etc.).

During the SS_VarSect call, the driver can validate or update this field (or the me-
dia itself) according to the driver’s conventions. These typically are:

¿ If the driver can dynamically determine the media’s sector size, and
PD_SSize is passed in as 0, the driver updates this field according to the
current media setting.

¡ If the driver can dynamically set the media’s sector size, and PD_SSize is
passed in as a non-zero value, the driver sets the media to the value in
PD_SSize (this is typical when re-formatting the media).

¬ If the driver cannot dynamically determine or set the media sector size, it
usually validates PD_SSize against the supported sector sizes, and returns
an error (E$SectSiz) if PD_SSize contains an invalid value.

• Non-variable sector size driver
If the driver does not support variable logical sector sizes (that is, logical sector size
is fixed at 256 bytes), RBF ignores PD_SSize. In this case, PD_SSize can be
used to support deblocking drivers that support various physical sector sizes.

NOTE: A non-variable sector sized driver is defined as a driver which returns the
E$UnkSvc error for GetStat (SS_VarSect).

RBF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 6 OS-9 Technical Manual

Name Description

PD_Cntl Device control word
Indicates options that reflect the capabilities of the device. You may set these options,
as follows:

bit 0: 0 = Format enable
 1 = Format inhibit

bit 1: 0 = Single-Sector I/O
 1 = Multi-Sector I/O capable

bit 2: 0 = Device has non-stable ID
 1 = Device has stable ID

bit 3: 0 = Device size determined from descriptor values
 1 = Device size obtained by SS_DSize GetStat call

bit 4: 0 = Device cannot format a single track
 1 = Device can format a single track

bits 5-15: Reserved

PD_Trys Number of tries
Indicates whether a driver should try to access the disk again before returning an error.
Depending upon the driver in use, this field may be implemented as a flag or a retry
counter:

Value Flag Counter
0 retry ON default number of retries
1 retry OFF no retries
other retry ON specified number of retries

Drivers that work with controllers that have error correcting functions (for example,
E.C.C. on hard disks) should treat this field as a flag so they can set the controller’s error
correction/retry functions accordingly.

When formatting media, especially hard disks, the format-enabled descriptor should set
this field to one (retry OFF) to ensure that marginal media sections are marked out of
the media free space.

Device Descriptor and Path Descriptor Definitions RBF Device Descriptor Modules

OS-9 Technical Manual B - 7

Name Description

PD_LUN Logical unit number of SCSI drive
Used in the SCSI command block to identify the logical unit on the SCSI controller. To
eliminate allocation of unused drive tables in the driver static storage, this number may
be different from PD_DRV. PD_DRV indicates the logical number of the drive to the
driver, that is, the drive table to use. PD_LUN is the physical drive number on the
controller.

PD_WPC First cylinder to use write precompensation
The cylinder to begin write precompensation.

PD_RWR First cylinder to use reduced write current
The cylinder to begin reduced write current.

PD_Park Cylinder used to park head
The cylinder at which to park the hard disk’s head when the drive is shut down. Parking
is usually done on hard disks when they are shipped or moved and is implemented by
the SS_SQD SetStat to the driver.

PD_LSNOffs Logical sector offset
The offset to use when accessing a partitioned drive. The driver adds this value to the
logical block address passed by RBF prior to determining the physical block address on
the media. Typically, using PD_LSNOffs is mutually exclusive to using PD_TOffs.

PD_TotCyls Total cylinders on device
The actual number of physical cylinders on a drive. It is used by the driver to correctly
initialize the controller/drive. PD_TotCyls is typically used for physical initialization
of a drive that is partitioned or has PD_TOffs set to a non-zero value. In this case,
PD_CYL denotes the logical number of cylinders of the drive. If PD_TotCyls is zero,
the driver should determine the physical cylinder count by using the sum of PD_CYL
and PD_TOffs.

PD_CtrlrID SCSI controller ID
The ID number of the SCSI controller attached to the drive. The driver uses this
number to communicate with the controller.

RBF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 8 OS-9 Technical Manual

Name Description

PD_ScsiOpt SCSI driver options flags
The SCSI device options and operation modes. It is the driver’s responsibility to use or
reject these values, as applicable.

bit 0: 0 = ATN not asserted (no disconnect allowed)
 1 = ATN asserted (disconnect allowed)

bit 1: 0 = Device cannot operate as a target
 1 = Device can operate as a target

bit 2: 0 = Asynchronous data transfer
 1 = Synchronous data transfer

bit 3: 0 = Parity off
 1 = Parity on

All other bits are reserved.

PD_Rate Data transfer/rotational rate
The data transfer rate and rotational speed of the floppy media. Note that this field is
normally used only when the physical size field (PD_TYP, bits 1-3) is non-zero.

bits 0-3: Rotational speed

0 = 300 RPM
1 = 360 RPM
2 = 600 RPM

All other values are reserved.

bits 4-7: Data transfer rate

0 = 125K bits/sec
1 = 250K bits/sec
2 = 300K bits/sec
3 = 500K bits/sec
4 = 1M bits/sec
5 = 2M bits/sec
6 = 5M bits/sec

All other values are reserved.

Device Descriptor and Path Descriptor Definitions RBF Device Descriptor Modules

OS-9 Technical Manual B - 9

PD_MaxCnt Maximum transfer count
The maximum byte count that the driver can transfer in one call. If this field is 0, RBF
defaults to the value of $ffff (65,535).

NOTE: Offset refers to the location of a module field, relative to the starting address of the static storage
area. Offsets are resolved in assembly code by using the names shown here and linking the module with
the relocatable library, sys.l or usr.l.

Device Descriptor Path Descriptor
Offset Label Description
$48 PD_DTP Device Class
$49 PD_DRV Drive Number
$4A PD_STP Step Rate
$4B PD_TYP Device Type
$4C PD_DNS Density
$4D Reserved
$4E PD_CYL Number of Cylinders
$50 PD_SID Number of Heads/Sides
$51 PD_VFY Disk Write Verification
$52 PD_SCT Default Sectors/Track
$54 PD_T0S Default Sectors/Track 0
$56 PD_SAS Segment Allocation Size
$58 PD_ILV Sector Interleave Factor
$59 PD_TFM DMA Transfer Mode
$5A PD_TOffs Track Base Offset
$5B PD_SOffs Sector Base Offset
$5C PD_SSize Sector Size (in bytes)
$5E PD_Cntl Control Word
$60 PD_Trys Number of Tries
$61 PD_LUN SCSI Unit Number of Drive
$62 PD_WPC Cylinder to Begin Write Precompensation
$64 PD_RWR Cylinder to Begin Reduced Write Current
$66 PD_Park Cylinder to Park Disk Head
$68 PD_LSNOffs Logical Sector Offset
$6C PD_TotCyls Number of Cylinders On Device

RBF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 10 OS-9 Technical Manual

$6E PD_CtrlrID SCSI Controller ID
$6F PD_Rate Data transfer/Disk Rotation Rates
$70 PD_ScsiOpt SCSI Driver Options Flags
$74 PD_MaxCnt Maximum Transfer Count

Figure B-1: Initialization Table for RBF Device Descriptor Modules

Device Descriptor and Path Descriptor Definitions RBF Definitions of the Path Descriptor

OS-9 Technical Manual B - 11

RBF Definitions of the Path Descriptor

The first 26 fields of the path options section (PD_OPT) of the RBF path descriptor are copied directly
from the device descriptor standard initialization table. All of the values in this table may be examined
using I$GetStt by applications using the SS_Opt code. Some of the values may be changed using
I$SetStt; some are protected by the file manager to prevent inappropriate changes. You can update the
following fields using GetStat and SetStat system calls:

PD_STP PD_TYP PD_DNS
PD_CYL PD_SID PD_VFY
PD_SCT PD_TOS PD_SAS

All other fields are read-only. The RBF path descriptor option table is shown on the following page.

Refer to the previous section on RBF device descriptors for descriptions of the first 26 fields. The last five
fields contain information provided by RBF:

Name Description

PD_ATT File attributes (D S PE PW PR E W R)
The file’s attributes are defined as follows:

bit 0: Set if owner read.

bit 1: Set if owner write.

bit 2: Set if owner execute.

bit 3: Set if public read.

bit 4: Set if public write.

bit 5: Set if public execute.

bit 6: Set if only one user at a time can open the file.

bit 7: Set if directory file.

PD_FD File descriptor
The LSN (Logical Sector Number) of the file’s file descriptor is written here.

PD_DFD Directory file descriptor
The LSN of the file’s directory file descriptor is written here.

PD_DCP File’s directory entry pointer
The current position of the file’s entry in its directory.

RBF Definitions of the Path Descriptor Device Descriptor and Path Descriptor Definitions

B - 12 OS-9 Technical Manual

PD_DVT Device table pointer (copy)
The address of the device table entry associated with the path.

Name Description
PD_SctSiz Logical sector size

The logical sector size of the device associated with the path. If this is 0, assume a size of
256 bytes.

PD_NAME File name

NOTE: In the following chart, offset refers to the location of a path descriptor field relative to the starting
address of the path descriptor. Path descriptor offsets are resolved in assembly code by using the names
shown here and linking with the relocatable library: sys.l or usr.l.

Figure B-2: Option Table for RBF Path Descriptor

Offset Name Description
$80 PD_DTP Device Class
$81 PD_DRV Drive Number
$82 PD_STP Step Rate
$83 PD_TYP Device Type
$84 PD_DNS Density
$85 Reserved
$86 PD_CYL Number of Cylinders
$88 PD_SID Number of Heads/Sides
$89 PD_VFY Disk Write Verification
$8A PD_SCT Default Sectors/Track
$8C PD_TOS Default Sectors/Track 0
$8E PD_SAS Segment Allocation Size
$90 PD_ILV Sector Interleave Factor
$91 PD_TFM DMA Transfer Mode
$92 PD_TOffs Track Base Offset
$93 PD_SOffs Sector Base Offset
$94 PD_SSize Sector Size (in bytes)
$96 PD_Cntl Control Word
$98 PD_Trys Number of Tries
$99 PD_LUN SCSI Unit Number of Drive

Device Descriptor and Path Descriptor Definitions RBF Definitions of the Path Descriptor

OS-9 Technical Manual B - 13

$9A PD_WPC Cylinder to Begin Write Precompensation
$9C PD_RWR Cylinder to Begin Reduced Write Current
$9E PD_Park Cylinder to Park Disk Head
$A0 PD_LSNOffs Logical Sector Offset

RBF Definitions of the Path Descriptor Device Descriptor and Path Descriptor Definitions

B - 14 OS-9 Technical Manual

Offset Name Description

$A4 PD_TotCyls Number of Cylinders On Device
$A6 PD_CtrlrID SCSI Controller ID
$A7 PD_Rate Data Transfer/Rotational Rates
$A8 PD_ScsiOpt SCSI Driver Option Flag
$AC PD_MaxCnt Maximum Transfer Count
$B0 Reserved
$B5 PD_ATT File Attributes
$B6 PD_FD File Descriptor
$BA PD_DFD Directory File Descriptor
$BE PD_DCP File’s Directory Entry Pointer
$C2 PD_DVT Device Table Pointer (copy)
$C6 Reserved
$C8 PD_SctSiz Logical Sector Size
$CC Reserved
$E0 PD_NAME File Name

Device Descriptor and Path Descriptor Definitions SCF Device Descriptor Modules

OS-9 Technical Manual B - 15

SCF Device Descriptor Modules

Device descriptor modules for SCF-type devices contain the device address and an initialization table
which defines initial values for the I/O editing features, as listed below. The initialization table immedi-
ately follows the standard device descriptor module header fields (see Chapter 3 for full descriptions). The
size of the table is defined in the M$Opt field. The initialization table is graphically shown in Figure B-
3 and the following table.

NOTE: You can change or disable most of these special editing functions by changing the corresponding
control character in the path descriptor. You can do this with the I$SetStt service request or the tmode
utility. A permanent solution may be to change the corresponding control character value in the device
descriptor module. You can easily change the device descriptors with the xmode utility.

Name Description
PD_DTP Device type

Set to zero for SCF devices. (0=SCF, 1=RBF, 2=PIPE, 3=SBF, 4=NET)

PD_UPC Letter case
If PD_UPC is not equal to zero, input or output characters in the range “a..z” are made
“A..Z”.

PD_BSO Destructive backspace
If PD_BSO is zero when a backspace character is input, SCF echoes PD_BSE (backspace
echo character). If PD_BSO is non-zero, SCF echoes PD_BSE, space, PD_BSE.

PD_DLO Delete
If PD_DLO is zero, SCF deletes by backspace-erasing over the line. If PD_DLO is not
zero, SCF deletes by echoing a carriage return/line-feed.

PD_EKO Echo
If PD_EKO is not zero, all input bytes are echoed, except undefined control characters,
which are printed as periods. If PD_EKO is zero, input characters are not echoed.

PD_ALF Automatic line feed
If PD_ALF is not zero, line-feeds automatically follow carriage returns.

PD_NUL End of line null count
Indicates the number of NULL padding bytes to send after a carriage return/line-feed
character.

SCF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 16 OS-9 Technical Manual

PD_PAU End of page pause
If PD_PAU is not zero, an auto page pause occurs upon reaching a full screen of output.
See PD_PAG for setting page length.

Name Description
PD_PAG Page length

Contains the number of lines per screen (or page).

PD_BSP Backspace “input” character
Indicates the input character recognized as backspace. See PD_BSE and PD_BSO.

PD_DEL Delete line character
Indicates the input character recognized as the delete line function. See PD_DLO.

PD_EOR End of record character
Defines the last character on each line entered (I$Read, I$ReadLn). An output line is
terminated (I$Writln) when this character is sent. Normally PD_EOR should be set to
$0D. WARNING: If PD_EOR is set to zero, SCF’s I$ReadLn will never terminate,
unless an EOF or error occurs.

PD_EOF End of file character
This field defines the end-of-file character. SCF returns an end-of-file error on I$Read or
I$ReadLn if this is the first (and only) character input.

PD_RPR Reprint line character
If this character is input, SCF (I$ReadLn) reprints the current input line. A carriage return
is also inserted in the input buffer for PD_DUP (see below) to make correcting typing
errors more convenient.

PD_DUP Duplicate last line character
If this character is input, SCF (I$ReadLn) duplicates whatever is in the input buffer
through the first PD_EOR character. Normally, this is the previous line typed.

PD_PSC Pause character
If this character is typed during output, output is suspended before the next end-of-line.
This also deletes any “type ahead” input for I$ReadLn.

PD_INT Keyboard interrupt character
If this character is input, SCF sends a keyboard interrupt signal to the last user of this path.
It terminates the current I/O request (if any) with an error identical to the keyboard interrupt
signal code. PD_INT is normally set to a control-C character.

Device Descriptor and Path Descriptor Definitions SCF Device Descriptor Modules

OS-9 Technical Manual B - 17

PD_QUT Keyboard abort character
If this character is input, SCF sends a keyboard abort signal to the last user of this path. It
terminates the current I/O request (if any) with an error code identical to the keyboard abort
signal code. PD_QUT is normally set to a control-E character.

Name Description

PD_BSE Backspace “output” character (echo character)
This field indicates the backspace character to echo when PD_BSP is input. See PD_BSP
and PD_BSO.

PD_OVF Line overflow character
If I$ReadLn has satisfied its input byte count, SCF ignores any further input characters
until an end-of-record character (PD_EOR) is received. It echoes the PD_OVF character
for each byte ignored. PD_OVF is usually set to the terminal’s bell character.

PD_PAR Parity code, number of stop bits and bits/character
Bits zero and one indicate the parity as follows:

0 = no parity
1 = odd parity
3 = even parity

Bits two and three indicate the number of bits per character as follows:

0 = 8 bits/character
1 = 7 bits/character
2 = 6 bits/character
3 = 5 bits/character

Bits four and five indicate the number of stop bits as follows:

0 = 1 stop bit
1 = 1 1/2 stop bits
2 = 2 stop bits

Bits six and seven are reserved.

SCF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 18 OS-9 Technical Manual

PD_BAU Software adjustable baud rate
This one-byte field indicates the baud rate as follows:

0 = 50 baud 6 = 600 baud C = 4800 baud
1 = 75 baud 7 = 1200 baud D = 7200 baud
2 = 110 baud 8 = 1800 baud E = 9600 baud
3 = 134.5 baud 9 = 2000 baud F = 19200 baud
4 = 150 baud A = 2400 baud 10 = 38400 baud
5 = 300 baud B = 3600 baud FF = External

Name Description
PD_D2P Offset to output device descriptor name string

SCF sends output to the device named in this string. Input comes from the device named
by the M$PDev field. This permits two separate devices (a keyboard and video display)
to be one logical device. Usually PD_D2P refers to the name of the same device descriptor
in which it appears.

PD_XON X-ON character
See PD_XOFF below.

PD_XOFF X_OFF character
The X-ON and X-OFF characters are used to support software handshaking. Output from
a SCF device is halted immediately when PD_XOFF is received and does not resume until
PD_XON is received. This allows the distant end to control its incoming data stream.
Input to a SCF device is controlled by the driver. If the input FIFO is nearly full, the driver
sends PD_XOFF to the distant end to halt input. When the FIFO has been emptied
sufficiently, the driver resumes input by sending the PD_XON character. This allows the
driver to control its incoming data stream.

NOTE: When software handshaking is enabled, the driver consumes the PD_XON and
PD_XOFF characters itself.

PD_Tab Tab character
In I$WritLn calls, SCF expands this character into spaces to make tab stops at the column
intervals specified by PD_Tabs. NOTE: SCF does not know the effect of tab characters
on particular terminals. Tab characters may expand incorrectly if they are sent directly to
the terminal.

PD_Tabs Tab field size
See PD_Tab.

Device Descriptor and Path Descriptor Definitions SCF Device Descriptor Modules

OS-9 Technical Manual B - 19

NOTE: Offset refers to the location of a module field, relative to the starting address of the module.
Module offsets are resolved in assembly code by using the names shown here and linking the module with
the relocatable library: sys.l or usr.l.

Device Path
Descriptor Descriptor
Offset Label Description
$48 PD_DTP Device Type
$49 PD_UPC Upper Case Lock
$4A PD_BSO Backspace Option
$4B PD_DLO Delete Line Character
$4C PD_EKO Echo
$4D PD_ALF Automatic Line Feed
$4E PD_NUL End Of Line Null Count
$4F PD_PAU End Of Page Pause
$50 PD_PAG Page Length
$51 PD_BSP Backspace Input Character
$52 PD_DEL Delete Line Character
$53 PD_EOR End Of Record Character
$54 PD_EOF End Of File Character
$55 PD_RPR Reprint Line Character
$56 PD_DUP Duplicate Line Character
$57 PD_PSC Pause Character
$58 PD_INT Keyboard Interrupt Character
$59 PD_QUT Keyboard Abort Character
$5A PD_BSE Backspace Output
$5B PD_OVF Line Overflow Character (bell)
$5C PD_PAR Parity Code, # of Stop Bits, and # of Bits/Character
$5D PD_BAU Adjustable Baud Rate
$5E PD_D2P Offset To Output Device Name
$60 PD_XON X-ON Character
$61 PD_XOFF X-OFF Character
$62 PD_TAB Tab Character
$63 PD_TABS Tab Column Width

Figure B-3: Device Descriptor Initialization Table

SCF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 20 OS-9 Technical Manual

Device Descriptor and Path Descriptor Definitions SCF Definitions of the Path Descriptor

OS-9 Technical Manual B - 21

SCF Definitions of the Path Descriptor

The first 27 fields of the path options section (PD_OPT) of the SCF path descriptor are copied directly
from the SCF device descriptor initialization table. The table is shown on the following page.

You can examine or change the fields with the I$GetStt and I$SetStt service requests or the tmode and
xmode utilities.

You may disable the SCF editing functions by setting the corresponding control character value to zero.
For example, if you set PD_INT to zero, there is no “keyboard interrupt” character.

NOTE: Full definitions for the fields copied from the device descriptor are available in the previous
section. The additional path descriptor fields are defined below:

Name Description

PD_TBL Device table entry
A user-visible copy of the device table entry for the device.

PD_COL Current column
The current column position of the cursor.

PD_ERR Most recent error status
The most recent I/O error status.

SCF Definitions of the Path Descriptor Device Descriptor and Path Descriptor Definitions

B - 22 OS-9 Technical Manual

NOTE: Offset refers to the location of a module field, relative to the starting address of the module.
Module offsets are resolved in assembly code by using the names shown here and linking the module with
the relocatable library: sys.l or usr.l.

Offset Name Description
$80 PD_DTP Device Type
$81 PD_UPC Upper Case Lock
$82 PD_BSO Backspace Option
$83 PD_DLO Delete Line Character
$84 PD_EKO Echo
$85 PD_ALF Automatic Line Feed
$86 PD_NUL End Of Line Null Count
$87 PD_PAU End Of Page Pause
$88 PD_PAG Page Length
$89 PD_BSP Backspace Input Character
$8A PD_DEL Delete Line Character
$8B PD_EOR End Of Record Character
$8C PD_EOF End Of File Character
$8D PD_RPR Reprint Line Character
$8E PD_DUP Duplicate Line Character
$8F PD_PSC Pause Character
$90 PD_INT Keyboard Interrupt Character
$91 PD_QUT Keyboard Abort Character
$92 PD_BSE Backspace Output
$93 PD_OVF Line Overflow Character (bell)
$94 PD_PAR Parity Code, # of Stop Bits, and # of Bits/Character
$95 PD_BAU Adjustable Baud Rate
$96 PD_D2P Offset To Output Device Name
$98 PD_XON X-ON Character
$99 PD_XOFF X-OFF Character
$9A PD_TAB Tab Character
$9B PD_TABS Tab Column Width
$9C PD_TBL Device Table Entry
$A0 PD_Col Current Column
$A2 PD_Err Most Recent Error Status

Device Descriptor and Path Descriptor Definitions SCF Definitions of the Path Descriptor

OS-9 Technical Manual B - 23

$A3 Reserved
Figure B-4: Path Descriptor Module Option Table for I/O Editing

SBF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 24 OS-9 Technical Manual

SBF Device Descriptor Modules

This section describes the definitions of the initialization table contained in device descriptor modules for
SBF devices. The initialization table immediately follows the standard device descriptor module header
fields (see Chapter 3 for full descriptions). A graphic representation of the table is shown in Figure B-5.
The size of the table is defined in the M$Opt field.

Device Path
Descriptor Descriptor
Offset Label Description
$48 PD_DTP Device Type
$49 PD_TDrv Tape Drive Number
$4A PD_SBF Reserved
$4B PD_NumBlk Maximum Number of Blocks to Allocate
$4C PD_BlkSiz Logical Block Size
$50 PD_Prior Driver Process Priority
$52 PD_SBFFlags SBF Path Flags
$53 PD_DrivFlag Driver Flags
$54 PD_DMAMode Direct Memory Access Mode
$56 PD_ScsiID SCSI Controller ID
$57 PD_ScsiLUN LUN on SCSI Controller
$58 PD_ScsiOpts SCSI Options Flags

Figure B-5: Initialization Table for SBF Device Descriptor Module

NOTE: In this table the offset values are the device descriptor offsets, while the labels are the path
descriptor offsets. To correctly access these offsets in a device descriptor using the path descriptor labels,
make the following adjustment: (M$DTyp - PD_OPT).

For example, to access the tape drive number in a device descriptor, use the following value: PD_TDrv
+ (M$DTyp - PD_OPT). To access the tape drive number in the path descriptor, use PD_TDrv. Module
offsets are resolved in assembly code by using the names shown here and linking with the relocatable
library: sys.l or usr.l.

Device Descriptor and Path Descriptor Definitions SBF Device Descriptor Modules

OS-9 Technical Manual B - 25

Name Description

PD_DTP Device class
This field is set to three for SBF devices. (0=SCF, 1=RBF, 2=PIPE, 3=SBF, 4=NET)

PD_TDrv Tape drive number
This is used to associate a one-byte integer with each drive that a controller will handle.
If using dedicated (for example, non-SCSI bus) controllers, this field usually defines
both the logical and physical drive number of the tape drive. If using tape drives
connected to SCSI controllers, this number defines the logical number of the tape drive
to the device driver. The physical controller ID and LUN are specified by the
PD_ScsiID and PD_ScsiLUN fields. Each controller’s drives should be numbered 0
to n-1 (n is the maximum number of drives the controller can handle). This number
also defines how many drive tables are required by the driver and SBF. SBF verifies
this number against SBF_NDRV prior to calling the driver.

PD_NumBlk Number of buffers/blocks used for buffering
Specifies the maximum number of buffers to be allocated by SBF for use by the
auxiliary process in buffered I/O. If this field is set to 0, unbuffered I/O is specified.

PD_BlkSiz Logical block size used for I/O
Specifies the size of the buffer to be allocated by SBF. This buffer size is used when
allocating multiple buffers used in buffered I/O. Unless the driver manages partial
physical blocks, this size should be an integer multiple of the physical tape block size.

PD_Prior Driver process priority
The priority at which SBF’s auxiliary process will run. This value is used during
initialization. Changing this value after initialization has no effect.

PD_SBFFlags SBF path flags
Specifies the actions that SBF takes when the path is closed. You can update this field
using GetStat/SetStat (SS_Opt). SBF supports the following flag definitions:

bit 0: (f_rest_b) 0 = No rewind on close.
 1 = Rewind on close.

bit 1: (f_offl_b) 0 = Do not put drive off-line on close.
 1 = Put drive off-line on close.

bit 2: (f_eras_b) 0 = Do not erase to end-of-tape on close.
 1 = Erase to end-of-tape on close.

SBF Device Descriptor Modules Device Descriptor and Path Descriptor Definitions

B - 26 OS-9 Technical Manual

Name Description

PD_DrivFlag Driver flags
This field is available for use by the device driver.

NOTE: References to these flags are often made using the PD_Flags offset (defined
in sys.l and usr.l). This reference is equivalent to PD_SBFFlags. References to
PD_DrivFlag should use a value of PD_Flags + 1.

PD_DMAMode Direct memory access mode
This field is hardware specific. If available, you can use this word to specify the DMA
Mode of the driver.

PD_ScsiID SCSI controller ID
This is the ID number of the SCSI controller attached to the device. The driver uses
this number when communicating with the controller.

PD_ScsiLUN Logical unit number of SCSI device
This number is the value to use in the SCSI command block to identify the logical unit
on the SCSI controller. This number may be different from PD_TDrv to eliminate
allocation of unused drive table storage. PD_TDrv indicates the logical number of the
drive to the driver and SBF (drive table to use). PD_ScsiLUN is the physical drive
number on the controller.

PD_ScsiOpts SCSI driver options flags
This field allows SCSI device options and operation modes to be specified. It is the
driver’s responsibility to use or reject these if applicable:

bit 0: 0 = ATN not asserted (no disconnects allowed).
 1 = ATN asserted (disconnects allowed).

bit 1: 0 = Device cannot operate as a target.
 1 = Device can operate as a target.

bit 2: 0 = asynchronous data transfers.
 1 = synchronous data transfers.

bit 3: 0 = parity off.
 1 = parity on.

All other bits are reserved.

Device Descriptor and Path Descriptor Definitions SBF Definitions of the Path Descriptor

OS-9 Technical Manual B - 27

SBF Definitions of the Path Descriptor

The reserved section (PD_OPT) of the path descriptor used by SBF is copied directly from the
initialization table of the device descriptor. The following table is provided to show the offsets used in the
path descriptor. For a full explanation of the path descriptor fields, refer to the previous pages.

Offset Name Description
$80 PD_DTP Device Type
$81 PD_TDrv Tape Drive Number
$82 PD_SBF Reserved
$83 PD_NumBlk Maximum Number of Blocks to Allocate
$84 PD_BlkSiz Logical Block Size
$88 PD_Prior Driver Process Priority
$8A PD_SBFFlags* SBF Path Flags
$8B PD_DrivFlag* Driver Flags
$8C PD_DMAMode Direct Memory Access Mode
$8E PD_ScsiID SCSI Controller ID
$8F PD_ScsiLUN LUN on SCSI controller
$90 PD_ScsiOpts SCSI Options Flags

* References to these flags are often made using the PD_Flags offset (defined in sys.l and usr.l).
This reference is equivalent to PD_SBFFlags. References to PD_DrivFlag should use a value
of PD_Flags + 1.

NOTE: Offset refers to the location of a path descriptor field relative to the starting address of the path
descriptor. Path descriptor offsets are resolved in assembly code by using the names shown here and
linking the module with the relocatable library: sys.l or usr.l.

PIPEMAN Definitions of the Path Descriptor Device Descriptor and Path Descriptor Definitions

B - 28 OS-9 Technical Manual

Pipeman Definitions of the Path Descriptor

The table shown below describes the option section (PD_OPT) of the path descriptor used by pipeman.

NOTE: Offset refers to the location of a module field, relative to the starting address of the module.
Module offsets are resolved in assembly code by using the names shown here and linking the module with
the relocatable library: sys.l or usr.l.

Name Description
DV_DTP Device type

This field is set to two for PIPE devices. (0 = SCF, 1 = RBF, 2 = PIPE, 3 = SBF, 4 = NET)

PD_BufSz Default pipe buffer size
Contains the default size of the FIFO buffer used by the pipe. If no default size is specified
and no size is specified when creating the pipe, PD_IOBuf is used.

PD_IOBuf Reserved I/O buffer
This contains the small I/O buffer to be used by the pipe if no other buffer is specified.

PD_Name Pipe file name (if any)

Offset

$80
$81
$82
$86
$E0

Figure B-7: Path Descriptor PD_OPT for PIPEMAN

Description

DV_DTP Device type
Reserved

PD_BufSz Default pipe buffer size
PD_IOBuf Reserved I/O buffer
PD_Name Pipe file name

End of Appendix B

OS-9 Technical Manual Error Codes - 1

This section lists OS-9 error codes in numerical order. They are categorized as follows:

Error Codes

000:001 - 000:067 Miscellaneous errors.

000:102 - 000:163 Processor Exception errors. Error codes in this range are reserved to
indicate that a processor related exception ocurred on behalf of the
program. Only those listed within this range can occur on behalf of the
user program. All other numbers between 100 - 163 are reserved.
Unless the program provides for special handling of the exception
condition (F$STrap), the error is fatal and the program terminates.
The listed errors that fall between 100-163 represent the hardware
exception vector plus 100.

000:164 - 000:176 Miscellaneous errors.

000:200 - 000:239 Operating system errors. These errors are normally generated by the
kernel or file managers.

000:240 - 000:255 I/O errors. These error codes are generated by device drivers or file
managers.

Range: Description:

Error Codes Error Codes

Error Codes - 2 OS-9 Technical Manual

ERROR NUMBER DESCRIPTION

000:001 Process has aborted.

000:002 KEYBOARD QUIT - The keyboard abort signal (S$Abort) was sent. This
is usually generated by typing control E.

000:003 KEYBOARD INTERRUPT - The keyboard interrupt signal (S$Intrpt)
was sent. This is usually generated by typing control C.

000:004 MODEM HANGUP - The modem hangup signal (S$HangUp) was sent.
This is usually generated when the device driver detects loss of data carrier.

000:064 E$IllFnc ILLEGAL FUNCTION CODE - A math trap handler error.

000:065 E$FmtErr FORMAT ERROR - A math trap handler error.

000:066 E$NotNum NUMBER NOT FOUND - A math trap handler error.

000:067 E$IllArg ILLEGAL ARGUMENT - A math trap handler error.

000:102 E$BusErr BUS ERROR - A bus error exception occurred.

000:103 E$AdrErr ADDRESS ERROR - An address error exception occurred.

000:104 E$IllIns ILLEGAL INSTRUCTION - An illegal instruction exception occurred.

000:105 E$ZerDiv ZERO DIVIDE - An integer zero divide exception occurred.

000:106 E$Chk CHECK - A CHK or CHK2 instruction exception occurred.

000:107 E$TrapV TRAP - A TRAPV, TRAPcc, or FTRAPcc instruction exception occurred.

000:108 E$Violat PRIVILEGE VIOLATION - A privilege violation exception occurred.

000:109 E$Trace UNINITIALIZED TRACE EXCEPTION - An uninitialized trace
exception occurred.

000:110 E$1010 1010 TRAP - An A Line emulator exception occurred.

000:111 E$1111 1111 TRAP - An F Line emulator exception occurred.

000:113 COPROCESSOR PROTOCOL VIOLATION

Error Codes Error Codes

OS-9 Technical Manual Error Codes - 3

ERROR NUMBER DESCRIPTION

000:114 FORMAT ERROR

000:115 UNINITIALIZED INTERRUPT OCCURRED

000:124 SPURIOUS INTERRUPT OCCURRED

000:133-000:147 E$Trap Uninitialized user TRAP 1-15 executed.

000:148 E$FPUnordC FPCP ERROR - Branch or set on unordered condition error.

000:149 E$FPInxact FPCP ERROR - Inexact result.

000:150 E$FPDivZer FPCP ERROR - Divide by zero error.

000:151 E$FPUndrFl FPCP ERROR - Underflow error.

000:152 E$FPOprErr FPCP ERROR - Operand error.

000:153 E$FPOverFl FPCP ERROR - Overflow error.

000:154 E$FPNotNum FPCP ERROR - NAN signaled.

000:155 FPCP ERROR - Unimplemented Data Type

000:156 PMMU CONFIGURATION ERROR

000:157 PMMU ILLEGAL OPERATION

000:158 PMMU ACCESS LEVEL VIOLATION

000:164 E$Permit NO PERMISSION - The process or module must be owned by the super-
user to perform the requested function.

000:165 E$Differ DIFFERENT ARGUMENTS - F$ChkNam arguments do not match.

000:166 E$StkOvf STACK OVERFLOW - F$ChkNam can cause this error if the pattern
string is too complex.

000:167 E$EvntID ILLEGAL EVENT ID - An invalid or illegal event ID number is specified.

000:168 E$EvNF EVENT NAME NOT FOUND - An attempt to link to or delete an event is
made, but the name is not found in the event table.

Error Codes Error Codes

Error Codes - 4 OS-9 Technical Manual

ERROR NUMBER DESCRIPTION

000:169 E$EvBusy EVENT BUSY - An attempt to delete an event is made and its link count is
non-zero. This can also occur if an attempt to create an already existent
named event is made.

000:170 E$EvParm IMPOSSIBLE EVENT PARAMETER - This error returns when
impossible parameters are passed to F$Event.

000:171 E$Damage SYSTEM DAMAGE - A system data structure has been corrupted.

000:172 E$BadRev INCOMPATIBLE REVISION - The software revision is incompatible
with the operating system revision.

000:173 E$PthLost PATH LOST - The path became lost. This usually occurs when:

• A network node has gone down

• A serial connection has lost data carrier

• A pipe path has been broken due to an SS_Break SetStat

000:174 E$BadPart BAD PARTITION - Bad partition data or no active partition.

000:175 E$Hardware HARDWARE DAMAGE HAS BEEN DETECTED - E$Hardware
usually occurs when the driver fails to detect the correct responses from the
hardware. This can occur due to hardware failure or an incorrect hardware
configuration.

000:176 E$SectSize INVALID SECTOR SIZE - The sector size of a RBF device must be a
binary multiple of 256 (256, 512, 1024, etc.). The maximum sector size is
32768.

000:200 E$BPNum PATH TABLE FULL - A user program has tried to open more than 32 I/O
paths simultaneously. When the system path table gets full, the kernel
automatically expands it. However, this error could be returned if there is
not enough contiguous memory to expand the table.

000:201 E$BPNum ILLEGAL PATH NUMBER - The path number was too large, or for a non-
existent path. This could occur whenever passing a path number to an I/O
call.

Error Codes Error Codes

OS-9 Technical Manual Error Codes - 5

ERROR NUMBER DESCRIPTION

000:202 E$Poll INTERRUPT POLLING TABLE FULL - An attempt was made to install
an IRQ Service Routine into the system polling table, and the table was full.
To install another interrupt producing device, one must first be removed.
The system’s INIT module specifies the maximum number of IRQ devices
that may be installed.

000:203 E$BMode ILLEGAL MODE - An attempt was made to perform an I/O function of
which the device or file was incapable. This could occur, for instance, when
trying to read from an output file (for example, a printer).

000:204 E$DevOvf DEVICE TABLE FULL - The specified device cannot be added to the
system because the device table is full. To install another device, one must
first be removed. The system’s INIT module specifies the maximum
number of devices that may be supported, but this may be changed to add
more.

000:205 E$BMID ILLEGAL MODULE HEADER - The specified module cannot be loaded
because its module sync code is incorrect.

000:206 E$DirFul MODULE DIRECTORY FULL - The specified module cannot be added
to the system because the module directory is full. To load or create another
module, one must first be unlinked. Although OS-9 expands the module
directory when it becomes full, this error may be returned because there is
not enough memory or the memory is too fragmented to use.

000:207 E$MemFul MEMORY FULL - The process will not execute because there is not
enough contiguous RAM free. This can also occur if a process has already
been allocated the maximum number of blocks permitted by the system.

000:208 E$UnkSvc ILLEGAL SERVICE REQUEST - The specified service call has an
unknown or invalid service code number. This can also occur if a
Getstat/Setstat call is made with an unknown status code.

000:209 E$ModBsy MODULE BUSY - An attempt was made to access a non-sharable module
that is in use by another process.

000:210 E$BPAddr BOUNDARY ERROR - A memory deallocation request was not passed a
valid block address or an attempt was made to deallocate memory not
previously assigned.

ERROR NUMBER DESCRIPTION

000:211 E$EOF END OF FILE - An end of file condition was encountered on a read
operation.

Error Codes Error Codes

Error Codes - 6 OS-9 Technical Manual

000:212 E$VctBsy VECTOR BUSY - A device is trying to use an IRQ vector that is currently
being used by another device.

000:213 E$NES NON-EXISTING SEGMENT - A search was made for a disk file segment
that cannot be found. The device may have a damaged file structure.

000:214 E$FNA FILE NOT ACCESSIBLE - An attempt was made to open a file or device
without the correct access permissions. Check the file’s attributes and the
owner ID.

000:215 E$BPNam BAD PATH NAME - There is a syntax error in the specified pathlist
(illegal character, etc.). This can occur whenever referencing a path by
name.

000:216 E$PNNF PATH NAME NOT FOUND - The specified pathlist cannot be found.
This could be caused by misspellings or incorrect directories, etc.

000:217 E$SLF SEGMENT LIST FULL - A file is too fragmented to be expanded any
further. This can be caused by expanding a file many times without regard
to allocation of memory. It also occurs on disks with little free memory or
disks whose free memory is too scattered. A simple way to solve this
problem is to copy the file (or disk). This should move it into contiguous
areas.

000:218 E$CEF FILE ALREADY EXISTS - An attempt was made to create a file using a
name that already appears in the current directory.

000:219 E$IBA ILLEGAL BLOCK ADDRESS - A search for an illegal block address has
occurred. An invalid pointer or block size has been passed or the device’s
file structure is damaged.

000:220 E$HangUp TELEPHONE (MODEM) DATA CARRIER LOST

000:221 E$MNF MODULE NOT FOUND - A request is made to link to a module that is not
found in the module directory. Modules whose headers have been modified
or corrupted will not be found.

Error Codes Error Codes

OS-9 Technical Manual Error Codes - 7

ERROR NUMBER DESCRIPTION

000:222 E$NoClk NO CLOCK - This error returns when a request is made that uses the
system clock and the system has no clock running. For example, a timed
SLEEP request returns this error if there is no system clock running.
SETIME is used to start the system clock.

000:223 E$DelSP SUICIDE ATTEMPT - A user requested deallocation and return of the
memory where the user’s stack is located. This could be caused, for
example, by using the F$Mem system call to contract the data memory of
the specified process.

000:224 E$IPrcID ILLEGAL PROCESS NUMBER - A system call was passed a process ID
to a non-existent process or a process that the user may not access.

000:225 E$Param BAD PARAMETER - A service request has been passed an illegal or
impossible parameter.

000:226 E$NoChld NO CHILDREN - An F$Wait request was made and the process has no
child process for which to wait.

000:227 E$ITrap ILLEGAL TRAP CODE - An unavailable (already in use) or invalid trap
code is used in a TLINK call.

000:228 E$PrcAbt PROCESS ABORTED - A process is aborted by the kill signal code.

000:229 E$PrcFul PROCESS TABLE FULL - The system process table is full (too many
processes currently running). Although OS-9 automatically tries to expand
the table, this error may occur if there is not enough contiguous memory to
do so.

000:230 E$IForkP ILLEGAL PARAMETER AREA - Ridiculous parameters were passed to
a fork call.

000:231 E$KwnMod KNOWN MODULE - A call was made to install a module that is already in
memory.

000:232 E$BMCRC INCORRECT MODULE CRC - The specified module being checked or
verified has a bad CRC value. To generate a valid CRC, use the FIXMOD
utility.

000:233 E$USigP UNPROCESSED SIGNAL PENDING

Error Codes Error Codes

Error Codes - 8 OS-9 Technical Manual

ERROR NUMBER DESCRIPTION

000:234 E$NEMod NON-EXECUTABLE MODULE - A process tries to execute a module
with a type other than program/object.

000:235 E$BNam BAD NAME - There is a syntax error in the specified name.

000:236 E$BMHP BAD PARITY - The specified module has bad module header parity.

000:237 E$NoRAM RAM FULL - There is no free system RAM available at the time of the
request for memory allocation. This also occurs when there is not enough
contiguous memory to process a fork request.

000:238 E$DNE DIRECTORY NOT EMPTY - An attempt was made to remove the
directory attribute from a directory that is not empty.

000:239 E$NoTask NO TASK NUMBER AVAILABLE - All task numbers are currently in
use and a request was made for execution or creation of a new task.

000:240 E$Unit ILLEGAL DRIVE NUMBER

000:241 E$Sect BAD SECTOR - Bad disk sector number.

000:242 E$WP WRITE PROTECT - Device is write protected.

000:243 E$CRC CRC ERROR - CRC error on read or write verify.

000:244 E$Read READ ERROR - Data transfer error during disk read operation, or SCF
(terminal) input buffer overrun.

000:245 E$Write WRITE ERROR - Hardware error during disk write operation.

000:246 E$NotRdy NOT READY - Device has “not ready” status.

000:247 E$Seek SEEK ERROR - Physical seek to non-existent sector.

000:248 E$Full MEDIA FULL - Insufficient free space on media.

000:249 E$BTyp WRONG TYPE - Attempt to read incompatible media (that is, attempt to
read double-side disk on single-side drive).

000:250 E$DevBsy DEVICE BUSY - Non-sharable device is in use.

Error Codes Error Codes

OS-9 Technical Manual Error Codes - 9

ERROR NUMBER DESCRIPTION

000:251 E$DIDC DISK ID CHANGE - The disk media was changed with open files. RBF
copies the disk ID number (from sector 0) into the path descriptor of each
path when it is opened. If this does not agree with the driver’s current disk
ID, this error returns. The driver updates the current disk ID only when
sector 0 is read. Therefore, it is possible to swap disks without RBF
noticing. This check helps to prevent this possibility.

000:252 E$Lock RECORD IS LOCKED-OUT - Another process is accessing the requested
record. Normal record locking routines will wait forever for a record in use
by another user to become available. However, RBF may be told to wait for
a finite amount of time with a Setstat. If the time expires before the record
becomes free, this error returns.

000:253 E$Share NON-SHARABLE FILE BUSY - The requested file or device has the
single user bit set or it was opened in single user mode and another process
is accessing the requested file. A common way to get this error is to attempt
to delete a file that is currently open.

000:254 E$DeadLk I/O DEADLOCK - Two processes are attempting to use the same two disk
areas simultaneously. Each process is locking out the other process,
producing the I/O deadlock. One of the two processes must release its
control to allow the other to proceed.

000:255 E$Format DEVICE IS FORMAT PROTECTED - An attempt was made to format a
disk that is format protected. A bit in the device descriptor may be changed
to allow the device to be formatted. Formatting is usually inhibited on hard
disks to prevent erasure.

NOTES Error Codes

Error Codes - 10 OS-9 Technical Manual

NOTES

System Call Index A - 1

Chapter 1: User-state System Calls
F$Alarm Set alarm clock... 1-1
F$AllBit Send bits in an allocation map ... 1-5
F$CCtl Cache control ... 1-6
F$Chain Load and execute new primary module ... 1-7
F$CmpNam Compare two names... 1-9
F$CpyMem Copy external memory... 1-10
F$CRC Generate CRC .. 1-11
F$DatMod Create data module .. 1-12
F$DelBit Deallocate in bit map ... 1-13
F$DExec Execute debugged program ... 1-14
F$DExit Exit debugged program.. 1-16
F$DFork Fork process under control of debugger .. 1-17
F$Event Create, manipulate, and delete events.. 1-18
F$Exit Terminate the calling process .. 1-28
F$Fork Create a new process.. 1-30
F$GBlkMp Get free memory block map .. 1-32
F$GModDr Get copy of module directory .. 1-34
F$GPrDBT Get copy of process descriptor block table.. 1-35
F$GPrDsc Get copy of process descriptor... 1-36
F$Gregor Get Gregorian date... 1-37
F$ID Get process ID/user ID .. 1-38
F$Icpt Set up a signal intercept trap.. 1-39
F$Julian Get Julian date ... 1-40

System Call
Index

(by name)

System Call Index OS-9 System Calls

A - 2 System Call Index

F$Link Link to memory module .. 1-41
F$Load Load module(s) from a file .. 1-42
F$Mem Resize data memory area ... 1-43
F$PErr Print error message .. 1-44
F$PrsNam Parse path name ... 1-45
F$RTE Return from interrupt exception .. 1-46
F$SchBit Search bit map for a free area .. 1-47
F$Send Send a signal to another process .. 1-48
F$SetCRC Generate valid CRC in module.. 1-50
F$SetSys Set/examine OS-9 system global variables.. 1-51
F$SigMask Masks/Unmasks signals during critical code... 1-52
F$Sleep Put calling process to sleep .. 1-53
F$SPrior Set process priority .. 1-54
F$SRqCMem System request for colored memory .. 1-55
F$SRqMem System memory request... 1-56
F$SRtMem Return system memory .. 1-57
F$SSpd Suspend process ... 1-58
F$STime Set system date and time.. 1-59
F$STrap Set error trap handler ... 1-60
F$SUser Set user ID number .. 1-62
F$SysDbg Call system debugger... 1-63
F$Time Get system date and time ... 1-64
F$TLink Install user trap handler module... 1-65
F$Trans Translate memory address ... 1-67
F$UAcct User accounting ... 1-68
F$UnLink Unlink module by address ... 1-69
F$UnLoad Unlink module by name... 1-70
F$Wait Wait for child process to terminate.. 1-71

Chapter 2: I/O System Calls
I$Attach Attach I/O device ... 2-1
I$ChgDir Change working directory ... 2-3
I$Close Close a path to a file/device... 2-4
I$Create Create a path to a new file ... 2-5
I$Delete Delete a file .. 2-7
I$Detach Remove a device from the system ... 2-8
I$Dup Duplicate a path ... 2-9
I$GetStt Get file/device status.. 2-10
I$MakDir Make a new directory .. 2-15
I$Open Open a path to a file or device ... 2-16

OS-9 System Calls System Call Index

System Call Index A - 3

I$Read Read data from a file or device .. 2-18
I$ReadLn Read a text line with editing .. 2-19
I$Seek Reposition the logical file pointer.. 2-20
I$SetStt Set file/device status .. 2-21
I$Write Write data to file or device .. 2-30
I$WritLn Write a line of text with editing ... 2-31

System Call Index OS-9 System Calls

A - 4 System Call Index

Chapter 3: System-state System Calls
F$Alarm Set alarm clock... 3-1
F$AllPD Allocate process/path descriptor .. 3-6
F$AllPrc Allocate process descriptor .. 3-7
F$AProc Enter process in active process queue.. 3-8
F$DelPrc De-allocate process descriptor service request .. 3-9
F$FindPD Find process/path descriptor .. 3-10
F$IOQu Enter I/O queue.. 3-11
F$IRQ Add or remove device from IRQ table .. 3-12
F$Move Move data (low bound first) .. 3-14
F$NProc Start next process ... 3-15
F$Panic System catastrophic occurrence... 3-16
F$RetPD Return process/path descriptor... 3-17
F$SSvc Service request table initialization... 3-18
F$VModul Validate module ... 3-20

OS-9 System Calls System Call Index

System Call Index A - 5

F$IRQ Add or remove device from IRQ table .. 3-12
F$AllBit Send bits in an allocation bit map.. 1-5
F$AllPD Allocate process/path descriptor .. 3-6
F$AllPrc Allocate process descriptor .. 3-7
I$Attach Attach a new device to the system... 2-1
F$CCtl Cache control ... 1-6
F$SysDbg Call system debugger... 1-63
F$Chain Load and execute new primary module ... 1-7
I$ChgDir Change working directory ... 2-3
I$Close Close a path to a file/device ... 2-4
F$CmpNam Compare two names... 1-9
F$CpyMem Copy external memory... 1-10
F$DatMod Create data module .. 1-12
F$Fork Create a new process.. 1-30
I$Create Create a path to a new file ... 2-5
F$Event Create, manipulate, and delete events.. 1-18
F$DelPrc De-allocate process descriptor service request .. 3-9
F$DelBit Deallocate in bit map ... 1-13
I$Delete Delete a file .. 2-7
I$Detach Remove a device from the system ... 2-8
I$Dup Duplicate a path ... 2-9
F$AProc Enter process in active process queue.. 3-8
F$IOQu Enter I/O queue.. 3-11
F$DExec Execute debugged program ... 1-14

System Call
Index

(by function)

System Call Index OS-9 System Calls

A - 6 System Call Index

F$DExit Exit debugged program.. 1-16
F$FindPD Find process/path descriptor .. 3-10
F$DFork Fork process under control of debugger .. 1-17
F$CRC Generate CRC .. 1-11
F$SetCRC Generate valid CRC in module .. 1-50
F$GBlkMp Get free memory block map .. 1-32
F$GModDr Get copy of module directory .. 1-34
F$GPrDBT Get copy of process descriptor block table .. 1-35
F$GPrDsc Get copy of process descriptor... 1-36
F$Gregor Get Gregorian date... 1-37
F$ID Get process ID/user ID .. 1-38
F$Julian Get Julian date ... 1-40
I$GetStt Get file/device status.. 2-10
F$TLink Install user trap handler module... 1-65
F$Link Link to memory module .. 1-41
F$Load Load module(s) from a file .. 1-42
I$MakDir Make a new directory .. 2-15
F$SigMask Masks/Unmasks signals during critical code... 1-52
F$Move Move data (low bound first) .. 3-14
I$Open Open a path to a file or device ... 2-16
F$PrsNam Parse a path name .. 1-45
F$PErr Print error message .. 1-44
F$Sleep Put calling process to sleep .. 1-53
I$Read Read data from a file or device .. 2-18
I$ReadLn Read a text line with editing .. 2-19
I$Seek Reposition the logical file pointer.. 2-20
F$Mem Resize data memory area ... 1-43
F$RTE Return from interrupt exception .. 1-46
F$RetPD Return process/path descriptor... 3-17
F$SRtMem Return system memory .. 1-57
F$SchBit Search bit map for a free area .. 1-47
F$Send Send a signal to another process .. 1-48
F$SSvc Service request table initialization ... 3-18
F$Alarm Set alarm clock... 1-1
F$Alarm Set alarm clock... 3-1
F$Icpt Set up a signal intercept trap.. 1-39
F$SPrior Set process priority .. 1-54
F$STime Set system date and time.. 1-59
F$STrap Set error trap handler ... 1-60
F$SUser Set user ID number .. 1-62

OS-9 System Calls System Call Index

System Call Index A - 7

F$Time Get system date and time ... 1-64
I$SetStt Set file/device status .. 2-21
F$SetSys Set/examine OS-9 system global variables.. 1-51
F$NProc Start next process ... 3-15
F$SSpd Suspend process ... 1-58
F$Panic System catastrophic occurrence... 3-16
F$SRqCMem System request for colored memory .. 1-55
F$SRqMem System memory request... 1-56
F$Exit Terminate the calling process .. 1-28
F$Trans Translate memory address ... 1-67
F$UnLink Unlink module by address ... 1-69
F$UnLoad Unlink module by name... 1-70
F$UAcct User accounting ... 1-68
F$VModul Validate module ... 3-20
F$Wait Wait for child process to terminate.. 1-71
I$WritLn Write a line of text with editing ... 2-31
I$Write Write data to file or device .. 2-30

System Call Index OS-9 System Calls

A - 8 System Call Index

End of System Call Index

i

OS-9 System Call Descriptions

You use system calls to communicate between the OS-9 operating system and assembly language level
programs. There are three general categories of system calls:

• User-state
• I/O
• System-state

All system calls have a mnemonic name for easy reference. User and system state functions start with F$.
I/O related functions begin with I$. The mnemonic names are defined in the relocatable library file usr.l
or sys.l. You should link these files with your programs.

The OS-9 I/O system calls are simpler to use than in many other operating systems. This is because the
calling program does not have to allocate and set up file control blocks, sector buffers, etc. Instead, OS-9
returns a path number word when a file/device is opened. You can use this path number in subsequent I/O
requests to identify the file/device until the path is closed. OS-9 internally allocates and maintains its own
data structures, you never have to deal with them.

System state system calls are privileged and can only execute while OS-9 is in system state (when it is
processing another service request, executing a file manager, device driver, etc.). System state functions
are included in this manual primarily for the benefit of those programmers who are writing device drivers
and other system-level applications. For a full description of system state and its uses, refer to Chapter 2
of the OS-9 Technical Overview.

Introduction

OS-9 Technical Manual

ii

System calls are performed by loading the MPU registers with the appropriate parameters and executing
a Trap #0 instruction, immediately followed by a constant word (the request code). Function results (if
any) are returned in the MPU registers after OS-9 has processed the service request. All system calls use
a standard convention for reporting errors; if an error occurred, the carry bit of the condition code register
is set and register d1.w contains an appropriate error code, permitting a BCS or BCC instruction
immediately following the system call to branch on error/no error.

Here is an example system call for the Close service request:

MOVE.W Pathnum (a6),d0
TRAP #0
DC.W I$Close
BCS.S Error

Using the assembler’s OS9 directive simplifies the call:

MOVE.W Pathnum (a6),d0
OS9 I$Close
BCS.S Error

Some system calls generate errors themselves; these are listed as POSSIBLE ERRORS. If the returned
error code does not match any of the given possible errors, then it was probably returned by another system
call made by the main call.

The SEE ALSO listing for each service request shows related service requests and/or chapters that may
yield more information about the request.

In the system call descriptions which follow, registers not explicitly specified as input or output parameters
are not altered. Strings passed as parameters are normally terminated by a null byte.

End of Introduction

User-state System Calls F$Alarm

OS-9 System Calls 1 - 1

ASM CALL: OS9 F$Alarm

INPUT: d0.l = Alarm ID (or zero)
d1.w = Alarm function code
d2.l = Signal code
d3.l = Time interval (or time)
d4.l = Date (when using absolute time)

OUTPUT: d0.l = Alarm ID

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$Alarm creates an asynchronous software alarm clock timer. The timer sends a signal
to the calling process when the specified time period has elapsed. A process may have
multiple alarm requests pending.

The time interval is the number of system clock ticks (or 256ths of a second) to wait
before an alarm signal is sent. If the high order bit is set, the low 31 bits are interpreted
as 256ths of a second.

NOTE: All times are rounded up to the nearest clock tick.

The system automatically deletes a process’s pending alarms when the process dies.

The alarm function code selects one of the several related alarm functions. Not all input
parameters are always needed; each function is described in detail in the following
pages.

OS-9 supports the following function codes:

A$Delete Remove a pending alarm request
A$Set Send a signal after specified time interval
A$Cycle Send a signal at specified time intervals
A$AtDate Send a signal at Gregorian date/time
A$AtJul Send a signal at Julian date/time

SEE ALSO: F$Alarm System State Call

POSSIBLE
 ERRORS: E$UnkSvc, E$Param, E$MemFul, E$NoRAM, and E$BPAddr.

F$Alarm Set Alarm Clock

F$Alarm: A$Delete, A$Set User-state System Calls

1 - 2 OS-9 System Calls

F$ALARM FUNCTION CODES:

INPUT: d0.l = Alarm ID (or zero)
d1.w = A$Delete function code

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: A$Delete removes a cyclic alarm, or any alarm that has not expired. If zero is passed
as the alarm ID, all pending alarm requests are removed.

INPUT: d0.l = Reserved, must be zero
d1.w = A$Set function code
d2.w = Signal code
d3.l = Time Interval

OUTPUT: d0.l = Alarm ID

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: A$Set sends one signal after the specified time interval has elapsed. The time interval
may be specified in system clock ticks, or 256ths of a second.

A$Delete Remove a Pending Alarm Request

A$Set Send a Signal after a Specified Time Interval

User-state System Calls F$Alarm: A$Cycle, A$AtDate

OS-9 System Calls 1 - 3

INPUT: d0.l = reserved, must be zero
d1.w = A$Cycle function code
d2.l = signal code
d3.l = time interval (N)

OUTPUT: d0.l = Alarm ID

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: A$Cycle is similar to the A$Set function, except that the alarm is reset after it is sent,
to provide a recurring periodic signal.

INPUT: d0.l = Reserved, must be zero
d1.w = A$AtDate function code
d2.l = Signal code
d3.l = Time (00hhmmss)
d4.l = Date (YYYYMMDD)

OUTPUT: d0.l = Alarm ID

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: A$AtDate sends a signal to the caller at a specific date and time.

NOTE: A$AtDate only allows you to specify time to the nearest second. However, it
does adjust if the system’s date and time have changed (via F$STime). The alarm
signal is sent anytime the system date/time becomes greater than or equal to the alarm
time.

A$Cycle Send a Signal Every N Ticks/Seconds

A$AtDate Send a Signal at Gregorian Date/Time

F$Alarm: A$AtJul User-state System Calls

1 - 4 OS-9 System Calls

INPUT: d0.l = Reserved, must be zero
d1.w = A$AtDate or A$AtJul function code
d2.l = Signal code
d3.l = Time (seconds after midnight)
d4.l = Date (Julian day number)

OUTPUT: d0.l = Alarm ID

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: A$AtJul sends a signal to the caller at a specific Julian date and time. NOTE: A$AtJul
only allows you to specify time to the nearest second. However, it does adjust if the
system’s date and time have changed (via F$STime). The alarm signal is sent anytime
the system date/time becomes greater than or equal to the alarm time.

A$AtJul Send a Signal at Julian Date/Time

User-state System Calls F$AllBit

OS-9 System Calls 1 - 5

ASM CALL: OS9 F$AllBit

INPUT: d0.w = Bit number of first bit to set
d1.w = Bit count (number of bits to set)
(a0) = Base address of an allocation bit map

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$AllBit sets bits in the allocation map that were found by F$SchBit, and are now
allocated. Bit numbers range from 0 to n-1, where n is the number of bits in the
allocation bit map.

In some applications you must allocate and deallocate segments of a fixed resource,
such as memory. One convenient way is to set up a map that describes which blocks
are available or in use. Each bit in the map represents one block. If the bit is set, the
block is in use. If the bit is clear, the block is available. The F$SchBit, F$AllBit, and
F$DelBit system calls perform the elementary bitmap operations of finding a free
segment, allocating it, and returning it when it is no longer needed.

RBF uses these routines to manage cluster allocation on disks. They are accessible to
users because they are occasionally useful.

SEE ALSO: F$SchBit and F$DelBit.

F$AllBit Sends Bits in an Allocation Bit Map

F$CCtl User-state System Calls

1 - 6 OS-9 System Calls

ASM CALL: OS9 F$CCtl

INPUT: d0.l = desired cache control operation

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$CCtl performs operations on the system instruction and/or data caches, if there are
any.

If d0.l is set to zero, the system instruction and data caches are flushed. Non-super-
group, user-state processes may perform this generic operation.

Only system-state processes (for example, device driver) and super-group processes
may perform precise operation of F$CCtl. The following bits are defined in d0.l for
precise operation:

Bit 0 If set, enables data cache.
Bit 1 If set, disables data cache.
Bit 2 If set, flushes data cache.
Bit 4 If set, enables instruction cache.
Bit 5 If set, disables instruction cache.
Bit 6 If set, flushes instruction cache.

All other bits are reserved. If any reserved bit is set, an E$Param error is returned.

Any program that builds or changes executable code in memory should flush the
instruction cache by F$CCtl prior to the execution of the new code. This is necessary
because the hardware instruction cache is not updated by data (write) accesses and may
therefore contain the unchanged instruction(s). For example, if a subroutine builds an
OS-9 system call on its stack, the F$CCtl system call to flush the instruction cache must
execute prior to executing the temporary instructions.

POSSIBLE
ERRORS: E$Param

F$CCtl Cache Control

User-state System Calls F$Chain

OS-9 System Calls 1 - 7

ASM CALL: OS9 F$Chain

INPUT: d0.w = desired module type/language (must be program/object or 0=any)
d1.l = additional memory size
d2.l = parameter size
d3.w = number of I/O paths to copy
d4.w = priority
(a0) = module name ptr
(a1) = parameter ptr

OUTPUT: None: F$Chain does not return to the calling process.

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$Chain executes an entirely new program, but without the overhead of creating a new
process. It is similar to a Fork command followed by an EXIT. F$Chain effectively
resets the calling process’s program and data memory areas and begins execution of a
new primary module. Open paths are not closed or otherwise affected.

Chain executes as follows:

¿ The process’s old primary module is unlinked.

¡ The system parses the name string of the new process’s primary module (the
program that will be executed). Next, the system module directory is
searched to see if a module of the same name and type/language is already
in memory. If so, the module is linked. If not, the name string is used as the
pathlist of a file which is to be loaded into memory. The first module in this
file is linked.

¬ The data memory area is reconfigured to the specified size in the new
primary module’s header.

Ð Intercepts and any pending signals are erased.

F$Chain Load and Execute New Primary Module

F$Chain User-state System Calls

1 - 8 OS-9 System Calls

The diagram below shows how Chain sets up the data memory area and registers for
the new module (these are identical to F$Fork).

NOTE: (a6) is actually biased by $8000, but this can usually be ignored because the
linker biases all data references by -$8000. However, it may be significant to note when
debugging programs.

The minimum overall data area size is 256 bytes. Address registers point to even
addresses.

SEE ALSO: F$Fork and F$Load.

CAVEATS: Most errors that occur during the Chain are returned as an exit status to the parent of
the process doing the chain.

POSSIBLE
ERRORS: E$NEMod

Data Area

(a1) (highest address)

(a5), (a7)

(a6) (lowest address)

Registers passed to child process:

Parameter Area

Stack Area

sr = 0000
pc = module entry point
d0.w = process ID
d1.l = group/user number
d2.w = priority
d3.w = number of I/O paths inherited
d4.l = undefined
d5.l = parameter size
d6.l = total initial memory allocation
d7.l = undefined

(a4) = undefined
(a5) = parameter pointer
(a6) = static storage (data area)
 base pointer
(a7) = stack pointer (same as a5)

(a0) = undefined
(a1) = top of memory pointer
(a2) = undefined
(a3) = primary (forked) module

pointer

User-state System Calls F$CmpNam

OS-9 System Calls 1 - 9

ASM CALL: OS9 F$CmpNam

INPUT: d1.w = Length of pattern string
(a0) = Pointer to pattern string
(a1) = Pointer to target string

OUTPUT: cc = Carry bit clear if the strings match

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$CmpNam compares a target name to a source pattern to determine if they are equal.
Upper and lower case are considered to match. Two wild card characters are
recognized in the pattern string:

• Question mark (?) matches any single character

• Asterisk (*) matches any string

The target name must be terminated by a null byte.

POSSIBLE E$Differ The names do not match.
ERRORS: E$StkOvf The pattern is too complex.

F$CmpNam Compare Two Names

F$CpyMem User-state System Calls

1 - 10 OS-9 System Calls

ASM CALL: OS9 F$CpyMem

INPUT: d0.w = process ID of external memory’s owner
d1.l = number of bytes to copy
(a0) = address of memory in external process to copy
(a1) = caller’s destination buffer pointer

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$CpyMem copies external memory into your buffer for inspection. You can use
F$CpyMem to copy portions of the system’s address space. This is especially helpful
in examining modules. You can view any memory in the system with F$CpyMem.

SEE ALSO: F$Move

F$CpyMem Copy External Memory

User-state System Calls F$CRC

OS-9 System Calls 1 - 11

ASM CALL: OS9 F$CRC

INPUT: d0.l = Data byte count
d1.l = CRC accumulator
(a0) = Pointer to data

OUTPUT: d1.l = Updated CRC accumulator

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$CRC generates or checks the CRC (cyclic redundancy check) values of sections of
memory. Compilers, assemblers, or other module generators use F$CRC to generate
a valid module CRC.

If the CRC of a new module is to be generated, the CRC is accumulated over the entire
module, excluding the CRC itself. The accumulated CRC is complemented and then
stored in the correct position in the module.

You can calculate the CRC starting at the source address over a specified number of
bytes. It is not necessary to cover an entire module in one call, since the CRC may be
accumulated over several calls. The CRC accumulator must be initialized to
$FFFFFFFF before the first F$CRC call for any particular module.

An easier method of checking an existing module’s CRC is to perform the calculation
on the entire module, including the module CRC. The CRC accumulator contains the
CRC constant bytes if the module CRC is correct. The CRC constant is defined in sys.l
and usr.l as CRCCon. Its value is $00800FE3.

SEE ALSO: OS-9 Technical Overview, Chapter 1, section on CRC.

CAVEATS: The CRC value is three bytes long, in a four-byte field. To generate a valid module
CRC, the caller must include the byte preceding the CRC in the check. This byte must
be initialized to zero. For convenience, if a data pointer of zero is passed, the CRC is
updated with one zero data byte. F$CRC always returns $FF in the most significant
byte of d1, so d1.l may be directly stored (after complement) in the last four bytes of a
module as the correct CRC.

F$CRC Generate CRC

F$DatMod User-state System Calls

1 - 12 OS-9 System Calls

ASM CALL: OS9 F$DatMod

INPUT: d0.l = size of data required (not including header or CRC)
d1.w = desired attr/revision
d2.w = desired access permission
d3.w = desired type/language (optional)
d4.l = memory color type (optional)
(a0) = module name string ptr

OUTPUT: d0.w = module type/language
d1.w = module attr/revision
(a0) = updated name string ptr
(a1) = module data ptr (’execution’ entry)
(a2) = module header ptr

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$DatMod creates a data module with the specified attribute/revision and clears the
data portion of the module. The module is initially created with a valid CRC, and
entered into the system module directory. Several processes can communicate with
each other using a shared data module.

Be careful not to modify the data module’s header or name string to avoid the
possibility of the module becoming unknown to the system.

CAVEATS: The module created contains at least d0.l usable data bytes, but may be somewhat
larger. The module itself will be larger by at least the size of the module header and
CRC, and rounded up to the nearest system memory allocation boundary.

SEE ALSO: F$SetCRC and F$Move.

POSSIBLE E$Differ The names do not match.
ERRORS: E$StkOvf The pattern is too complex.

F$DatMod Create Data Module

User-state System Calls F$DelBit

OS-9 System Calls 1 - 13

ASM CALL: OS9 F$DelBit

INPUT: d0.w = Bit number of first bit to clear
d1.w = Bit count (number of bits to clear)
(a0) = Base address of an allocation bit map

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$DelBit clears bits in the allocation bit map that were previously allocated and are
now free for general use. Bit numbers range from 0 to n-1, where n is the number of
bits in the allocation bit map.

SEE ALSO: F$AllBitF$CpyMem and F$SchBit.

F$DelBit Deallocate in a Bit Map

F$DExec User-state System Calls

1 - 14 OS-9 System Calls

ASM CALL: OS9 F$DExec

INPUT: d0.w = process ID of child to execute
d1.l = number of instructions to execute (0 = continuous)
d2.w = number of breakpoints in list
(a0) = breakpoint list
register buffer contains child register image

OUTPUT: d0.l = total number of instructions executed so far
d1.l = remaining count not executed
d2.w = exception occurred, if non-zero; exception offset
d3.w = classification word (addr or bus trap only)
d4.l = access address (addr or bus trap only)
d5.w = instruction register (addr or bus trap only)
register buffer updated

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$DExec controls the execution of a suspended child process that has been created by
the F$DFork call. The process performing F$DExec is suspended and its debugged
child process is executed instead. Once the specified number of instructions are
executed, a breakpoint is reached or an unexpected exception occurs, execution
terminates, and control returns to the parent process. Thus, the parent and the child
processes are never active at the same time.

F$DExec traces every instruction of the child process. It checks for the termination
conditions after each instruction. Breakpoints are simply lists of addresses to check and
work with ROMed object programs. Consequently, the child process being debugged
runs at a slow speed.

If a -1 (hex $FFFFFFFF) is passed in d1.l, F$DExec replaces the instruction at each
breakpoint address with an illegal opcode. It then executes the child process at full
speed (with the trace bit clear) until a breakpoint is reached or the program terminates.
This can save an enormous amount of time, but it is impossible for F$DExec to count
the number of executed instructions.

Any OS-9 system calls made by the suspended program are executed at full speed and
are considered one logical instruction. The same is true of system-state trap handlers.
You cannot debug system-state processes.

F$DExec Execute Debugged Program

User-state System Calls F$DExec

OS-9 System Calls 1 - 15

The system uses the register buffer passed in the F$DFork call to save and restore the
child’s registers. Changing the contents of the register buffer alters the child process’s
registers.

If the child process terminates for any reason, the carry bit is set and returned. Tracing
may continue as long as the child process does not perform a F$Exit (even after
encountering any normally fatal error). A F$DExit call must be made to return the
debugged process’s resources (memory).

SEE ALSO: F$DFork and F$DExit.

CAVEATS: Tracing is allowed through user-state trap handlers, intercept routines, and the
F$Chain system call. This is not a problem, but may seem strange at times.

POSSIBLE
ERRORS: E$IPrcID and E$PrcAbt.

F$DExit User-state System Calls

1 - 16 OS-9 System Calls

ASM CALL: OS9 F$DExit

INPUT: d0.w = process ID of child to terminate

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$DExit terminates a suspended child process that was created with the F$DFork
system call. To permit post-mortem examination, normal termination by the child
process does not release any of its resources.

SEE ALSO: F$Exit, F$DFork, and F$DExec.

POSSIBLE
ERRORS: E$IPrcID

F$DExit Exit Debugged Program

User-state System Calls F$DFork

OS-9 System Calls 1 - 17

ASM CALL: OS9 F$DFork

INPUT: d0.w = desired module type/revision (0 = any)
d1.l = additional stack space to allocate (if any)
d2.l = parameter size
d3.w = number of I/O paths for child to inherit
d4.w = module priority
(a0) = module name ptr (or pathlist)
(a1) = parameter ptr
(a2) = register buffer: copy of child’s (d0-d7/a0-a7/sr/pc)

OUTPUT: d0.w = child process ID
(a0) = updated past module name string
(a2) = initial image of the child process’s registers in buffer

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$DFork is similar to F$Fork, except that F$DFork creates a process whose execution
can be closely controlled. The child process is not placed in the active queue but is left
in a suspended state. This allows the debugger to control its execution through the
special system calls F$DExec and F$DExit. (The child process is created with the
trace bit of its status register set and is executed with the F$DExec system call.)

The register buffer is an area in the caller’s data area that is permanently associated with
each child process. It is set to an image of the child’s initial registers for use with the
F$DExec call.

For information about process creation, see the F$Fork service request.

SEE ALSO: F$DExit, F$Fork, and F$DExec.

CAVEATS: A process created by F$DFork does not execute unless it is told to do so. When a
process is run, the trace bit is set in the user status register. This causes the system trace
exception handler to occur once for each user instruction executed, thus user programs
run slowly.

Processes whose primary module is owned by a super-user may only be debugged by a
super-user. You cannot debug system-state processes.

F$DFork Fork Process Under Control of Debugger

F$Event User-state System Calls

1 - 18 OS-9 System Calls

ASM CALL:OS9 F$Event

INPUT: d1.w = Event function code
All others are dependent on function code

OUTPUT: Dependent on function code

ERROR
OUTPUT: Dependent on function code

FUNCTION: Events are multiple-value semaphores that synchronize concurrent processes which
share resources such as files, data modules, and CPU time. F$Event provides facilities
to create and delete events, to permit processes to link/unlink events and obtain event
information, to suspend operation until an event occurs, and for various means of
signaling.

An OS-9 event is a 32-byte system global variable maintained by the system. The
following fields are included in each event:

Event ID This number and the event’s array position are used to create
a unique ID.

Event name This name must be unique and cannot exceed 12 characters.
Event value This four-byte integer value has a range of two billion.
Wait increment This value is added to the event value when a process waits

for the event. It is set when the event is created and does not
change.

Signal increment This value is added to the event value when the event is
signaled. This value is set when the event is created and does
not change.

Link Count This is the event use count.
Next event This is a pointer to the next process in the event queue. An

event queue is circular and includes all processes waiting for
the event. Each time the event is signaled, this queue is
searched.

Previous event This is a pointer to the previous process in the event queue.

F$Event Create, Manipulate, and Delete Events

User-state System Calls F$Event: Ev$Link

OS-9 System Calls 1 - 19

The following function codes are supported:

Ev$Link Link to existing event by name
Ev$UnLnk Unlink event
Ev$Creat Create new event
Ev$Delet Delete existing event
Ev$Wait Wait for event to occur
Ev$WaitR Wait for relative to occur
Ev$Read Read event value without waiting
Ev$Info Return event information
Ev$Pulse Signal an event occurrence
Ev$Signl Signal an event occurrence
Ev$Set Set event variable and signal an event occurrence
Ev$SetR Set relative event variable; signal an event occurrence

POSSIBLE
ERRORS: Dependent on function code

SEE ALSO: OS-9 Technical Overview Chapter 4, the section on Events.

F$EVENT FUNCTION CODES:

INPUT: (a0) = event name string pointer (max 11 chars)
d1.w = 0 (Ev$Link function code)

OUTPUT: d0.l = event ID number
(a0) = updated past event name

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Link determines the ID number of an existing event. Once an event is linked, all
subsequent references are made using the event ID returned. This permits the system
to access events quickly, while protecting against programs using invalid or deleted
events. The event use count is incremented when an Ev$Link is performed. To keep
the use count synchronized properly, perform an Ev$UnLnk when the event will no
longer be used.

POSSIBLE E$BNam Name is syntactically incorrect or longer than 11 chars.
ERRORS: E$EvNF Event not found in the event table.

Ev$Link Link to ExistingEvent by Name

F$Event: Ev$UnLnk, Ev$Creat User-state System Calls

1 - 20 OS-9 System Calls

INPUT: d0.l = event ID number
d1.w = 1 (Ev$UnLnk function code)

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Unlnk informs the system that a process will no longer use an event. The event use
count is decremented and the event is deleted when the count reaches zero. OS-9 uses
this only for error checking.

POSSIBLE
ERRORS: E$EvntID ID specified is not a valid active event.

INPUT: d0.l = initial event variable value
d1.w = 2 (Ev$Creat function code)
d2.w = auto-increment for Ev$Wait
d3.w = auto-increment for Ev$Signl
(a0) = event name string pointer (max 11-chars)

OUTPUT: d0.l = event ID number
(a0) = updated past event name

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Events may be created and deleted dynamically as needed. Upon creation, an initial
signed value is specified, as well as signed increments to be applied each time the event
occurs or is waited for. The event ID number returned is used in subsequent F$Event
calls to refer to the event created.

POSSIBLE E$BNam Name is syntactically incorrect or longer than 11 characters.
ERRORS: E$EvFull The event table is full.

E$EvBusy The named event already exists.

Ev$UnLnk Unlink Event

Ev$Creat Create New Event

User-state System Calls F$Event: Ev$Delet

OS-9 System Calls 1 - 21

INPUT: (a0) = event name string pointer (max 11-chars)
d1.w = 3 (Ev$Delet function code)

OUTPUT: (a0) = updated past event name

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Delet removes an event from the system event table, freeing the entry for use by
another event. Events have an implicit use count (initially set to one), which is
incremented with each Ev$Link call and decremented with each Ev$UnLnk call. An
event may not be deleted unless its use count is zero.

NOTE: OS-9 does not automatically unlink events when a F$Exit occurs.

POSSIBLE E$BNam Name is syntactically incorrect or longer than 11 characters.
ERRORS: E$EvNF Event not found in the event table.

E$EvBusy The event has a non-zero link count.

Ev$Delet Delete Existing Event

F$Event: Ev$Wait User-state System Calls

1 - 22 OS-9 System Calls

INPUT: d0.l = event ID number
d1.w = 4 (Ev$Wait function code)
d2.l = minimum activation value (signed)
d3.l = maximum activation value (signed)

OUTPUT: d1.l = actual event value

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Wait waits for an event to occur. The event variable is compared to the range
specified in d2 and d3. If the value is not in range, the calling process is suspended in
a FIFO event queue. It waits until an Ev$Signl occurs that puts the value in range and
adds the wait auto-increment (specified at creation) to the event variable.

If the process receives a signal while in the event queue, it is activated even though the
event has not actually occurred. The auto-increment is not added to the event variable,
and the event value returned is not within the specified range. The caller’s intercept
routine is executed, but an event error is not returned.

POSSIBLE
ERRORS: E$EvntID ID specified is not a valid active event.

Ev$Wait Wait for Event to Occur

User-state System Calls F$Event: Ev$WaitR, Ev$Read

OS-9 System Calls 1 - 23

INPUT: d0.l = event ID number
d1.w = 5 (Ev$WaitR function code)
d2.l = minimum relative activation value (signed)
d3.l = maximum relative activation value (signed)

OUTPUT: d1.l = actual event value
d2.l = minimum actual activation value
d3.l = maximum actual activation value

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$WaitR works exactly like Ev$Wait, except that the range specified in d2 and d3
is relative to the current event value. The event value is added to d2 and d3
respectively, and the actual values are returned to the caller. The Ev$Wait function is
then executed directly. If an underflow or overflow occurs on the addition, the values
$80000000 (minimum integer), and $7fffffff (maximum integer) are used, respectively.

POSSIBLE
ERRORS: E$EvntID ID specified is not a valid active event.

INPUT: d0.l = event ID number
d1.w = 6 (Ev$Read function code)

OUTPUT: d1.l = current event value

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Read reads the value of an event without waiting or modifying the event variable.
You can use this to determine the availability of the event (or associated resource)
without waiting.

POSSIBLE
ERRORS: E$EvntID ID specified is not a valid active event.

Ev$WaitR Wait for Relative Event to Occur

Ev$Read Read Event Value Without Waiting

F$Event: Ev$Info User-state System Calls

1 - 24 OS-9 System Calls

INPUT: d0.l = event index (ID number) to begin search
d1.w = 7 (Ev$Info function code)
(a0) = ptr to buffer for event information

OUTPUT: d0.l = event index found
(a0) = data returned in buffer

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Info returns a copy of the 32-byte event table entry associated with an event.
Unlike other F$Event functions, Ev$Info only uses the low word of d0. This index is
the system event number, ranging from zero to the maximum number of system events
minus one. The event information block for the first active event with an index greater
than or equal to this index is returned in the caller’s buffer. If none exists, an error is
returned. Ev$Info is provided for utilities needing to determine the status of all active
events.

POSSIBLE
ERRORS: E$EvntID The index is above all active events.

Ev$Info Return Event Information

User-state System Calls F$Event: Ev$Pulse

OS-9 System Calls 1 - 25

INPUT: d0.l = event ID number
d1.w = MS bit set to activate all processes in range
 LS bits = 9 (Ev$Pulse function code)
d2.l = event pulse value

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Pulse signals an event occurrence, but differs from Ev$Signl. The event variable
is set to the value passed in d2, and the signal auto-increment is not applied. Then, the
Ev$Signl search routine is executed and the original event value is restored.

POSSIBLE
ERRORS: E$EvntID The ID specified is not a valid active event.

Ev$Pulse Signal an Event Occurrence

F$Event: Ev$Signl User-state System Calls

1 - 26 OS-9 System Calls

INPUT: d0.l = event ID number
d1.w = MS bit set to activate all processes in range
 LS bits = 8 (Ev$Signl function code)

OUTPUT: None

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Signl signals that an event has occurred. The current event variable is updated with
the signal auto-increment specified when the event was created. Then, the event queue
is searched for the first process waiting for that event value. If the MS bit of d1 (the
function code) is set, all processes in the event queue that have a value in range are
activated. The sequence is the same for each event in the queue until the queue is
exhausted:

¿ The signal auto-increment is added to the event variable.

¡ The first process in range is awakened.

¬ The event variable is updated with the wait auto-increment.

Ð The search continues with the updated value.

POSSIBLE
ERRORS: E$EvntID The ID specified is not a valid active event.

Ev$Signl Signal an Event Occurrence

User-state System Calls F$Event: Ev$Set, Ev$SetR

OS-9 System Calls 1 - 27

INPUT: d0.l = event ID number
d1.w = MS bit set to activate all processes in range
 LS bits = A (Ev$Set function code)
d2.l = new event value

OUTPUT: d1.l = previous event value

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$Set is similar to the Ev$Signl call, except that the event variable is initially set to
the value passed in d2 rather than updated with the signal auto-increment. After this is
done, the Ev$Signl routine is executed directly.

POSSIBLE
ERRORS: E$EvntID The ID specified is not a valid active event.

INPUT: d0.l = event ID number
d1.w = MS bit set to activate all processes in range
 LS bits = B (Ev$SetR function code)
d2.l = (signed) increment for event variable

OUTPUT: d1.l = previous event value

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: Ev$SetR is similar to Ev$Signl, but instead of using the signal auto-increment value
to update the event variable, the value in d2 is used. Arithmetic underflows or
overflows are set to $80000000 or $7fffffff, respectively.

POSSIBLE
ERRORS: E$EvntID The ID specified is not a valid active event.

Ev$Set Set Event Variable and Signal an Event Occurrence

Ev$SetR Set Relative Event Variable and Signal an Event Occurrence

F$Exit User-state System Calls

1 - 28 OS-9 System Calls

ASM CALL: OS9 F$Exit

INPUT: d1.w = Status code to be returned to parent process

OUTPUT: Process is terminated

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$Exit is the means by which a process can terminate itself. Its data memory area is
de-allocated and its primary module is unlinked. All open paths are automatically
closed.

The death of the process can be detected by the parent executing a F$Wait call. This
returns (to the parent) the status word passed by the child in its Exit call. The shell
assumes that the status word is an OS-9 error code that the terminating process wishes
to pass back to its parent process. The status word could also be a user-defined status
value.

Processes called directly by the shell should only return an OS-9 error code or zero if
no error occurred. NOTE: The parent MUST do a F$Wait before the process
descriptor is returned.

A F$Exit call functions as follows:

¿ Close all paths.

¡ Return memory to system.

¬ Unlink primary module and user trap handlers.

Ð Free process descriptor of any dead child processes.

ƒ If parent is dead, free the process descriptor.

Ý If parent has not executed a F$Wait call, leave the process in limbo until
parent notices the death.

ý If parent is waiting, move parent to active queue, inform parent of
death/status, remove child from sibling list, and free its process descriptor
memory.

CAVEATS: Only the primary module and the user trap handlers are unlinked. Unlink any other
modules that are loaded or linked by the process before calling F$Exit.

F$Exit Terminate the Calling Process

User-state System Calls F$Exit

OS-9 System Calls 1 - 29

Although F$Exit closes any open paths, it pays no attention to errors returned by the
F$Close request. Because of I/O buffering, this can cause write errors to go unnoticed
when paths ARE left open. However, by convention, the standard I/O paths (0,1,2) are
usually left open.

SEE ALSO: I$Close, F$SRtMem, F$UnLink, F$FindPD, F$RetPD, F$Fork, F$Wait, and
F$AProc.

F$Fork User-state System Calls

1 - 30 OS-9 System Calls

ASM CALL: OS9 F$Fork

INPUT: d0.w = desired module type/revision (usually program/object 0=any)
d1.l = additional memory size
d2.l = parameter size
d3.w = number of I/O paths to copy
d4.w = priority
(a0) = module name pointer
(a1) = parameter pointer

OUTPUT: d0.w = child process ID
(a0) = updated beyond module name

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$Fork creates a new process which becomes a child of the caller. It sets up the new
process’s memory, MPU registers, and standard I/O paths.

The system parses the name string of the new process’s primary module (the program
that will initially be executed). Next, the system module directory is searched to see if
the program is already in memory. If so, the module is linked and executed. If not, the
name string is used as the pathlist of the file which is to be loaded into memory. The
first module in this file is linked and executed. To be loaded, the module must be
program object code and have the appropriate read and/or execute permissions set for
the user.

The primary module’s module header is used to determine the process’s initial data area
size. OS-9 then attempts to allocate RAM equal to the required data storage size plus
any additional size specified in d1, plus the size of any parameter passed. The RAM
area must be contiguous.

The new process’s registers are set up as shown in the diagram on the next page. The
execution offset given in the module header is used to set the PC to the module’s entry
point. If d4.w is set to zero, the new process inherits the same priority as the calling
process.

When the shell processes a command line, it passes a copy of the parameter portion (if
any) of the command line as a parameter string. The shell appends an end-of-line
character to the parameter string to simplify string-oriented processing.

F$Fork Create a New Process

User-state System Calls F$Fork

OS-9 System Calls 1 - 31

If any of the these operations are unsuccessful, the fork is aborted and an error is returned to the caller.
The diagram below shows how F$Fork sets up the data memory area and registers for a newly-created
process. For more information, see F$Wait.

NOTE: (a6) will actually be biased by $8000, but this can usually be ignored because the linker biases all
data references by -$8000. However, it may be significant to note when debugging programs.

CAVEATS: Both the child and parent process execute concurrently. If the parent executes a
F$Wait call immediately after the fork, it waits until the child dies before it resumes
execution. A child process descriptor is returned only when the parent does a F$Wait
call.

Modules owned by a super-user execute in system state if the system-state bit in the
module’s attributes is set. This is rarely necessary, quite dangerous, and not
recommended for beginners.

SEE ALSO: F$Wait, F$Exit, and F$Chain.

POSSIBLE
ERRORS: E$IPrcID

Data Area

(a1) (highest address)

(a5), (a7)

(a6) (lowest address)

Registers passed to child process:

Parameter Area

Stack Area

sr = 0000
pc = module entry point
d0.w = process ID
d1.l = group/user number
d2.w = priority
d3.w = number of I/O paths inherited
d4.l = undefined
d5.l = parameter size
d6.l = total initial memory allocation
d7.l = undefined

(a4) = undefined
(a5) = parameter pointer
(a6) = static storage (data area)
 base pointer
(a7) = stack pointer (same as a5)

(a0) = undefined
(a1) = top of memory pointer
(a2) = undefined
(a3) = primary (forked) module

pointer

F$GBlkMp User-state System Calls

1 - 32 OS-9 System Calls

ASM CALL: OS9 F$GblkMp

INPUT: d0.l = Address to begin reporting segments
d1.l = Size of buffer in bytes
(a0) = Buffer pointer

OUTPUT: d0.l = System’s minimum memory allocation size
d1.l = Number of memory fragments in system
d2.l = Total RAM found by system at startup
d3.l = Current total free RAM available
(a0) = Memory fragment information

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$GBlkMp copies the address and size of the system’s free RAM blocks into the user’s
buffer for inspection. It also returns various information concerning the free RAM as
noted by the output registers above. The address and size of the free RAM blocks are
returned in the user’s buffer in following format (address and size are 4-bytes):

Although F$GblkMp returns the address and size of the system’s free memory blocks,
these blocks may never be accessed directly. Use F$SRqMem to request free memory
blocks.

SEE ALSO: F$SRqMem and F$Mem.

F$GBlkMp Get Free Memory Block Map

end of memory
fragment information

address

address

address

address

size

size

size

size

0

.

.

.

User-state System Calls F$GBlkMp

OS-9 System Calls 1 - 33

CAVEATS: F$GBlkMp provides a status report concerning free system memory for mfree and
similar utilities. The address and size of free RAM changes with system use. Although
F$GblkMp returns the address and size of the system’s free memory blocks, these
blocks may never be accessed directly. Use F$SRqMem to request free memory
blocks.

F$GModDr User-state System Calls

1 - 34 OS-9 System Calls

ASM CALL: OS9 F$GModDr

INPUT: d1.l = Maximum number of bytes to copy
(a0) = Buffer pointer

OUTPUT: d1.l = Actual number of bytes copied

ERROR cc = Carry bit set
 OUTPUT: d1.w = Appropriate error code

FUNCTION: F$GModDr copies the system’s module directory into the user’s buffer for inspection.
mdir uses F$GModDr to look at the module directory. Although the module directory
contains pointers to each module in the system, the modules should never be accessed
directly. Rather, use a F$CpyMem call to copy portions of the system’s address space
for inspection. On some systems, directly accessing the modules may cause address or
bus trap errors.

SEE ALSO: F$Move and F$CpyMem.

CAVEATS: This system call is provided primarily for use by mdir and similar utilities. The format
and contents of the module directory may change on different releases of OS-9. For
this reason, it is often preferable to use the output of mdir to determine the names of
modules in memory.

F$GModDr Get Copy of Module Directory

User-state System Calls F$GPrDBT

OS-9 System Calls 1 - 35

ASM CALL: OS9 F$GPrDBT

INPUT: d1.l = maximum number of bytes to copy
(a0) = Buffer pointer

OUTPUT: d1.l = Actual number of bytes copied

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$GPrDBT copies the process descriptor block table into the caller’s buffer for
inspection. The procs utility uses F$GPrDBT to quickly determine which processes
are active in the system. Although F$GPrDBT returns pointers to the process
descriptors of all processes, NEVER access the process descriptors directly. Instead,
use the F$GPrDsc system call if you need to inspect particular process descriptors.

The system call, F$AllPd, describes the format of the process descriptor block table.

SEE ALSO: F$GPrDsc and F$AllPd.

F$GPrDBT Get Copy of Process Descriptor Block Table

F$GPrDBT User-state System Calls

1 - 36 OS-9 System Calls

ASM CALL: OS9 F$GPrDsc

INPUT: d0.w = Requested process ID
d1.w = Number of bytes to copy
(a0) = Process descriptor buffer pointer

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$GPrDsc copies a process descriptor into the caller’s buffer for inspection. There is
no way to change data in a process descriptor. The procs utility uses F$GPrDsc to
gain information about an existing process.

SEE ALSO: F$GPrDBT

CAVEATS: The format and contents of a process descriptor may change with different releases of
OS-9.

POSSIBLE
ERRORS: E$PrcID

F$GPrDsc Get Copy of the Process Descriptor

User-state System Calls F$Gregor

OS-9 System Calls 1 - 37

ASM CALL: OS9 F$Gregor

INPUT: d0.l = time (seconds since midnight)
d1.l = Julian date

OUTPUT: d0.l = time (00hhmmss)
d1.l = date (yyyymmdd)

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Gregor converts Julian dates to Gregorian dates. Gregorian dates are considered the
normal calendar dates.

The Julian date is similar to the Julian date used by astronomers. It is based on the
number of days that have elapsed since January 1, 4713 B.C. Each astronomical Julian
day changes at noon. OS-9 differs slightly from the astronomical standard by changing
Julian dates at midnight. It is relatively easy to adjust for this, when necessary.

CAVEATS: The normal (Gregorian) calendar was revised to correct errors due to leap year at
different dates throughout the world. The algorithm used by OS-9 makes this
adjustment on October 15, 1582. Be careful when you are working with old dates,
because the same day may be recorded as a different date by different sources.

NOTE: F$Gregor is the inverse function of F$Julian.

SEE ALSO: F$Julian and F$Time.

F$Gregor Get Gregorian Date

F$ID User-state System Calls

1 - 38 OS-9 System Calls

ASM CALL: OS9 F$ID

INPUT: None

OUTPUT: d0.w = Current process ID
d1.l = Current process group/user number
d2.w = Current process priority

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$ID returns the caller’s process ID number, group and user ID, and current process
priority (all word values). The process ID is assigned by OS-9 and is unique to the
process. The user ID is defined in the system password file, and is used for system and
file security. Several processes can have the same user ID.

F$ID Get Process ID / User ID

User-state System Calls F$Icpt

OS-9 System Calls 1 - 39

ASM CALL: OS9 F$Icpt

INPUT: (a0) = Address of the intercept routine
(a6) = Address to be passed to the intercept routine

OUTPUT: Signals sent to the process will cause the intercept routine to be called instead of the process being
killed.

ERROR
OUTPUT: None

FUNCTION: F$Icpt tells OS-9 to install a signal intercept routine: (a0) contains the address of the
signal handler routine, and (a6) usually contains the address of the program’s data area.

After the F$Icpt call has been made, whenever the process receives a signal, its
intercept routine executes. A signal aborts a process which has not used the F$Icpt
service request and its termination status (register d1.w) is the signal code. Many
interactive programs set up an intercept routine to handle keyboard abort and keyboard
interrupt signals.

The intercept routine is entered asynchronously because a signal may be sent at any
time (similar to an interrupt) and is passed the following:

d1.w = Signal code
(a6) = Address of intercept routine data area

The intercept routine should be short and fast, such as setting a flag in the process’s data
area. Avoid complicated system calls (such as I/O). After the intercept routine is
complete, it may return to normal process execution by executing the F$RTE system
call.

SEE ALSO: F$RTE and F$Send.

CAVEATS: Each time the intercept routine is called, 70 bytes are used on the user’s stack.

F$Icpt Set Up a Signal Intercept Trap

F$Julian User-state System Calls

1 - 40 OS-9 System Calls

ASM CALL: OS9 F$Julian

INPUT: d0.l = time (00hhmmss)
d1.l = date (yyyymmdd)

OUTPUT: d0.l = time (seconds since midnight)
d1.l = Julian date

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Julian converts Gregorian dates to Julian dates.

Julian dates are very convenient for computing elapsed time. To compute the number
of days between two dates, subtract the lower Julian date number from the higher
number.

The Julian day number returned is similar to the Julian date used by astronomers. It is
based on the number of days that have elapsed since January 1, 4713 B.C. Each
astronomical Julian day changes at noon. OS-9 differs slightly from the astronomical
standard by changing Julian dates at midnight. It is relatively easy to adjust for this,
when necessary.

You can also use the Julian day number to determine the day of the week for a given
date. Use the following formula:

weekday = MOD(Julian_Date + 2, 7)

This returns the day of the week as 0 = Sunday, 1 = Monday, etc.

CAVEATS: The normal (Gregorian) calendar was revised to correct errors due to leap year at
different dates throughout the world. The algorithm used by OS-9 makes this
adjustment on October 15, 1582. Be careful when working with old dates, because the
same day may be recorded as a different date by different sources.

F$Julian Get Julian Date

User-state System Calls F$Link

OS-9 System Calls 1 - 41

ASM CALL: OS9 F$Link

INPUT: d0.w = Desired module type/language byte (0 = any)
(a0) = Module name string pointer

OUTPUT: d0.w = Actual module type/language
d1.w = Module attributes/revision level
(a0) = Updated past the module name
(a1) = Module execution entry point
(a2) = Module pointer

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Link causes OS-9 to search the module directory for a module having a name,
language, and type as given in the parameters. If found, the address of the module’s
header is returned in (a2). The absolute address of the module’s execution entry point
is returned in (a1). As a convenience, you can obtain this and other information from
the module header. The module’s link count is incremented to keep track of how many
processes are using the module. If the module requested is not re-entrant, only one
process may link to it at a time.

If the module’s access word does not give the process read permission, the link call
fails. Link also fails to find modules whose header has been destroyed (altered or
corrupted) in memory.

SEE ALSO: F$Load, F$UnLink, and F$UnLoad.

POSSIBLE
ERRORS: EMNF, EBNam, and E$ModBsy.

F$Link Link to Memory Module

F$Load User-state System Calls

1 - 42 OS-9 System Calls

ASM CALL: OS9 F$Load

INPUT: d0.b = Access mode
d1.l = Memory "color" type to load (optional)
(a0) = Pathname string pointer

OUTPUT: d0.w = Actual module type/language
d1.w = Attributes/revision level
(a0) = Updated beyond path name
(a1) = Module execution entry pointer (of first module loaded)
(a2) = Module pointer

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Load opens a file specified by the pathlist. It reads one or more memory modules
from the file into memory until it reaches an error or end of file. Then, it closes the file.
Modules are usually loaded into the highest physical memory available.

An error can indicate an actual I/O error, a module with a bad parity or CRC, or that the
system memory is full.

All modules that are loaded are added to the system module directory, and the first
module read is linked. The parameters returned are the same as those returned by a link
call, and apply only to the first module loaded.

To be loaded, the file must contain a module or modules that have a proper module
header and CRC. The access mode may be specified as either Exec_ or Read_,
causing the file to load from the current execution or data directory, respectively.

If any of the modules loaded belong to the super-user, the file must also be owned by
the super-user. This prevents normal users from executing privileged service requests.

The input register which specifies memory color type (d1.l) is only referenced if the
most significant bit of d0.b is set.

CAVEATS: F$Load does not work on SCF devices.

POSSIBLE
ERRORS: E$MemFul and E$BMID.

F$Load Load Module(s) from a File

User-state System Calls F$Mem

OS-9 System Calls 1 - 43

ASM CALL: OS9 F$Mem

INPUT: d0.l = Desired new memory size in bytes

OUTPUT: d0.l = Actual size of new memory area in bytes
(a1) = Pointer to new end of data segment (+1)

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Mem contracts or expands the process’s data memory area. The new size requested
is rounded up to an even memory allocation block (16 bytes in version 2.0). Additional
memory is allocated contiguously upward (towards higher addresses), or de-allocated
downward from the old highest address. If d0 equals zero, the call is considered an
information request and the current upper bound and size is returned.

This request can never return all of a process’s memory, or cause deallocation of
memory at its current stack pointer.

The request may return an error upon an expansion request even though adequate free
memory exists, because the data area must always be contiguous. Memory requests by
other processes may fragment memory into smaller, scattered blocks that are not
adjacent to the caller’s present data area.

POSSIBLE
ERRORS: E$DelSP, E$MemFul, and E$NoRAM.

F$Mem Resize Data Memory Area

F$PErr User-state System Calls

1 - 44 OS-9 System Calls

ASM CALL: OS9 F$PErr

INPUT: d0.w = Error message path number (0=none)
d1.w = Error number

OUTPUT: None

ERROR
OUTPUT: None

FUNCTION: F$PErr is the system’s error reporting facility. It writes an error message to the stan-
dard error path. Most OS-9 systems will print ERROR #mmm.nnn. Error numbers
000:000 to 063:255 are reserved for the operating system.

If an error path number is specified, the path is searched for a text description of the
error encountered. The error message path contains an ASCII file of error messages.
Each line may be up to 80 characters long. If the error number matches the first seven
characters in a line (that is, 000:215), the rest of the line is printed along with the error
number.

Error messages may be continued on several lines by beginning each continuation line
with a space. An example error file might contain lines like this:

000:214 (E$FNA) File not accessible.

An attempt to open a file failed. The file was found, but is inaccessible to you in
the requested mode. Check the file’s owner ID and access attributes.

000:215 (E$BPNam) Bad pathlist specified.

The pathlist specified is syntactically incorrect.

000:216 (E$PNNF) File not found.

The pathlist does not lead to any known file.

000:218 (E$CEF) Tried to create a file that already exists.

000:253 (E$Share) Non-sharable file busy.

The most common way to get this error is to try to delete a file that is currently open.
Anytime a file already in use is opened for non-sharable access, this error occurs.
It also occurs if you try to access a non-sharable device (for example, a printer) that
is busy.

F$PErr Print Error Message

User-state System Calls F$PrsNam

OS-9 System Calls 1 - 45

ASM CALL: OS9 F$PrsNam

INPUT: (a0) = Name of string pointer

OUTPUT: d0.b = Pathlist delimiter
d1.w = Length of pathlist element
(a0) = Pathlist pointer updated past the optional "/" character
(a1) = Address of the last character of the name +1

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$PrsNam parses a string for a valid pathlist element, returning its size. Note that this
does not parse an entire pathname, only one element in it. A valid pathlist element may
contain the following characters:

A - Z Upper case letters . Periods
a - z Lower case letters _ Underscores
0 - 9 Numbers $ Dollar signs

Any other character terminates the name and is returned as the pathlist delimiter.

NOTE: F$PrsNam processes only one name, so several calls may be needed to
process a pathlist that has more than one name. F$PrsNam terminates a name on
recognizing a delimiter character. Pathlists are usually terminated with a null byte.

SEE ALSO: F$CmpNam

POSSIBLE
ERRORS: E$BNam

F$PrsNam Parse a Path Name

AFTER F$PrsNam CALL:

/

(a0)

00ELIF/0D

BEFORE F$PrsNam CALL:

/

(a0)

(a1) d0.b = "/"
d1.w = 2

00ELIF/0D

F$RTE User-state System Calls

1 - 46 OS-9 System Calls

ASM CALL: OS9 F$RTE

INPUT: None

OUTPUT: None

FUNCTION: F$RTE may be used to exit from a signal processing routine.

F$RTE terminates a process signal intercept routine and continues execution of the
main program. However, if there are unprocessed signals pending, the interrupt routine
executes again (until the queue is exhausted) before returning to the main program.

CAVEATS: When a signal is received, 70 bytes are used on the user stack. Consequently, intercept
routines should be kept very short and fast if many signals are expected.

SEE ALSO: F$Icpt

F$RTE Return from Interrupt Exception

User-state System Calls F$SchBit

OS-9 System Calls 1 - 47

ASM CALL: OS9 F$SchBit

INPUT: d0.w = Beginning bit number to search
d1.w = Number of bits needed
(a0) = Bit map pointer
(a1) = End of bit map (+1) pointer

OUTPUT: d0.w = Beginning bit number found
d1.w = Number of bits found

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SchBit searches the specified allocation bit map for a free block (cleared bits) of the
required length, starting at the beginning bit number (d0.w). F$SchBit returns the
offset of the first block found of the specified length.

If no block of the specified size exists, it returns with the carry set, beginning bit
number, and size of the largest block found.

SEE ALSO: F$AllBit and F$DelBit.

F$SchBit Search Bit Map for a Free Area

F$Send User-state System Calls

1 - 48 OS-9 System Calls

ASM CALL: OS9 F$Send

INPUT: d0.w = Intended receiver’s process ID number (0 = all)
d1.w = Signal code to send

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Send sends a signal to a specific process. The signal code is a word value. A process
may send the same signal to multiple processes of the same Group/User ID by passing
0 as the receiver’s process ID number. For example, the OS-9 Shell command, kill 0,
will unconditionally abort all processes with the same group/user ID (except the Shell
itself). This is a handy but dangerous tool to get rid of unwanted background tasks.

If you attempt to send a signal to a process that has an unprocessed, previous signal
pending, the signal is placed in a FIFO queue of signals for the individual process. If
the process is in the signal intercept routine when it receives a signal, the new signal is
processed when F$RTE executes.

If the destination process for the signal is sleeping or waiting, it is activated so that it
may process the signal. The signal processing intercept routine is executed, if it exists
(see F$Icpt), otherwise the signal aborts the destination process, and the signal code
becomes the exit status (see F$Wait).

An exception is the wakeup signal. It activates a sleeping process but does not cause
examination of the signal intercept routine and will not abort a process that has not
made an F$Icpt call.

Some of the signal codes have meanings defined by convention:

S$Kill = 0 = System abort (unconditional)
S$Wake = 1 = Wake up process
S$Abort = 2 = Keyboard abort
S$Intrpt = 3 = Keyboard interrupt
S$HangUp = 4 = Modem Hangup
 5-31 = Reserved for Microware; deadly to I/O
 32-255 = Reserved for Microware
 256-65535 = User defined

The S$Kill signal may only be sent to processes with the same group ID as the sender.
Super users may kill any process.

F$Send Send a Signal to Another Process

User-state System Calls F$Send

OS-9 System Calls 1 - 49

CAVEAT: The I/O system uses the S$Wake signal extensively. It is not reliable if used by user-
state programs.

Signal values less than 32 (S$Deadly) usually cause the current I/O operation to
terminate with an error status equal to the signal value.

SEE ALSO: F$Wait, F$Icpt, and F$Sleep.

POSSIBLE
ERRORS: E$IPrcID and E$USigP.

F$SetCRC User-state System Calls

1 - 50 OS-9 System Calls

ASM CALL: OS9 F$SetCRC

INPUT: (a0) = module pointer

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SetCRC updates the header parity and CRC of a module in memory. The module
may be an existing module known to the system, or simply an image of a module that
will subsequently be written to a file. The module must have correct size and sync
bytes; other parts of the module are not checked.

SEE ALSO: F$CRC

CAVEATS: The module image must start on an even address or an address error occurs.

OS-9 does not permit any modification to the header of a module known to the system.
Modifying the header makes the module inaccessible to other processes.

POSSIBLE
ERRORS: E$BMID

F$SetCRC Generate Valid CRC in Module

User-state System Calls F$SetSys

OS-9 System Calls 1 - 51

ASM CALL: OS9 F$SetSys

INPUT: d0.w = offset of system global variable to set/examine
d1.l = size of variable in least significant word (1, 2 or 4 bytes).
 The most significant bit, if set, indicates an examination
 request. Otherwise, the variable is changed to the value in
 register d2.
d2.l = new value (if change request)

OUTPUT: d2.l = original value of system global variable

ERROR cc = Carry set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SetSys changes or examines a system global variable. These variables have a D_
prefix in the system library sys.l. Consult the DEFS files for a description of the system
global variables.

SEE ALSO: F$SPrior and the DEFS Files section in the OS-9 Technical I/O Manual

CAVEATS: Only a super-user can change system variables. Any system variable may be examined,
but only a few may be altered. The only useful variables that may be changed are
D_MinPty and D_MaxAge. Consult Chapter 2 (section on process scheduling) of the
OS-9 Technical Overview for an explanation of what these variables control.

The system global variables are OS-9’s data area. It is highly likely that they will
change from one release to another. You will probably have to relink programs using
this system call to run them on future versions of OS-9.

CAUTION: The super-user must be extremely careful when changing system global variables.

F$SetSys Set/Examine OS-9 System Global Variables

F$Sigmask User-state System Calls

1 - 52 OS-9 System Calls

ASM CALL: OS9 F$SigMask

INPUT: d0.l = reserved, must be zero
d1.l = process signal level

 0 = clear
 1 = set/increment
-1 = decrement

OUTPUT: none

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$SigMask enables or disables signals from reaching the calling process. If a signal
is sent to a process whose mask is disabled, the signal is queued until the process mask
becomes enabled. The process’s signal intercept routine is executed with signals
inherently masked.

Two exceptions to this rule are the S$Kill and S$Wake signals. S$Kill terminates the
receiving process, regardless of the state of its mask. S$Wake ensures that the process
is active, but does not queue.

When a process makes a F$Sleep or F$Wait system call, its signal mask is
automatically cleared. If a signal is already queued, these calls return immediately (to
the intercept routine).

NOTE: Signals are analogous to hardware interrupts. They should be masked
sparingly, and intercept routines should be as short and fast as possible.

F$Sigmask Masks/Unmasks Signals During Critical Code

User-state System Calls F$Sleep

OS-9 System Calls 1 - 53

ASM CALL: OS9 F$Sleep

INPUT: d0.l = Ticks/seconds (length of time to sleep)

OUTPUT: d0.l = Remaining number of ticks if awakened prematurely

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Sleep deactivates the calling process until the number of ticks requested have
elapsed. Sleep(0) sleeps indefinitely. Sleep(1) gives up a time slice but does not
necessarily sleep for one tick. You cannot use F$Sleep to time more accurately than
+ or - 1 tick, because it is not known when the F$Sleep request was made during the
current tick.

A sleep of one tick is effectively a “give up current time slice” request; the process is
immediately inserted into the active process queue and resumes execution when it
reaches the front of the queue.

A sleep of two or more (n) ticks causes the process to be inserted into the active process
queue after (n - 1) ticks occur and resumes execution when it reaches the front of the
queue. The process is activated before the full time interval if a signal (in particular
S$Wake) is received. Sleeping indefinitely is a good way to wait for a signal or
interrupt without wasting CPU time.

The duration of a tick is system dependent, but is usually .01 seconds. If the high order
bit of d0.l is set, the low 31 bits are converted from 256ths of a second into ticks before
sleeping to allow program delays to be independent of the system’s clock rate.

SEE ALSO: F$Send and F$Wait.

CAVEATS: The system clock must be running to perform a timed sleep. The system clock is not
required to perform an indefinite sleep or to give up a time-slice.

POSSIBLE
ERRORS: E$NoClk

F$Sleep Put Calling Process to Sleep

F$SPrior User-state System Calls

1 - 54 OS-9 System Calls

ASM CALL: OS9 F$SPrior

INPUT: d0.w = Process ID number
d1.w = Desired process priority: 65535 = highest
 0 = lowest

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SPrior changes the process priority to the new value specified. A process can only
change another process’s priority if it has the same user ID. The one exception to this
rule is a super user (group ID zero), which may alter any process’s priority.

There are two system global variables that affect task-switching. D_MinPty is the
minimum priority that a task must have for OS-9 to age or execute it. D_MaxAge is the
cutoff aging point. D_MinPty and D_MaxAge are initially set in the Init module.

SEE ALSO: F$SetSys and the section on process scheduling in Chapter 2 of the OS-9 Technical
Overview.

CAVEATS: A very small change in relative priorities has a large effect. For example, if two
processes have priorities 100 and 200, the process with the higher priority runs 100
times before the low priority process runs at all. In actual practice, the difference may
not be this extreme because programs spend a lot of time waiting for I/O devices.

POSSIBLE
ERRORS: E$IPrcID

F$SPrior Set Process Priority

User-state System Calls F$SRqCMem

OS-9 System Calls 1 - 55

ASM CALL: OS9 F$SRqCMem

INPUT: d0.l = Byte count of requested memory
d1.l = Memory type code (0 = any)

OUTPUT: d0.l = Byte count of memory granted
(a2) = Pointer to memory block allocated

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SRqCMem allocates a block of a specific type of memory. If a non-zero type is
requested, the search is restricted to memory areas of that type. The area with the
highest priority is searched first.

When the type code is zero, the search is based only on priority. This allows you to
configure a system so that fast on-board memory is allocated before slow off-board
memory. Areas with a priority of zero are excluded from the search.

If more than one memory area has the same priority, the area with the largest total free
space is searched first. This allows memory areas to be balanced (that is, contain
approximately equal amounts of free space).

Memory types or “color codes” are system dependent and may be arbitrarily assigned
by the system administrator. Values below 256 are reserved for Microware use.

The number of bytes requested are rounded up to a system defined blocksize, which is
currently 16 bytes. The memory always begins on an even boundary.

If -1 is passed in d0.l, the largest block of free memory of the specified type is allocated
to the calling process.

F$SRqMem is equivalent to a F$SRqCMem request with a color of zero.

SEE ALSO: F$SRqMem, F$SRtMem, and F$Mem; Init module memory definitions and
Colored Memory discussion in Chapter 2 of the OS-9 Technical Overview.

POSSIBLE
ERRORS: E$MemFul, E$NoRAM, and E$Damage.

F$SRqCMem System Request for Colored Memory

F$SrqMem User-state System Calls

1 - 56 OS-9 System Calls

ASM CALL: OS9 F$SRqMem

INPUT: d0.l = Byte count of requested memory

OUTPUT: d0.l = Byte count of memory granted
(a2) = Pointer to memory block allocated

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SRqMem allocates a block of memory from the top of available RAM. The number
of bytes requested is rounded up to a system defined blocksize (currently 16 bytes).
This system call is useful for allocating I/O buffers and any other semi-permanent
memory. The memory always begins on an even boundary.

If -1 is passed in d0.l, the largest block of free memory is allocated to the calling
process.

The maximum number of blocks any process may have allocated is 32. This includes
the primary module’s static storage area. NOTE: This is a limit on the number of
segments allocated, not the amount of memory.

SEE ALSO: F$SRtMem and F$Mem.

CAVEATS: The byte count of memory allocated (as well as the pointer to the block allocated) must
be saved if the memory is ever to be returned to the system.

POSSIBLE
ERRORS: E$MemFul and E$NoRAM.

F$SrqMem System Memory Request

User-state System Calls F$SRtMem

OS-9 System Calls 1 - 57

ASM CALL: OS9 F$SRtMem

INPUT: d0.l = Byte count of memory being returned
(a2) = Address of memory block being returned

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SRtMem de-allocates memory after it is no longer needed. The number of bytes
returned is rounded up to a system defined blocksize before the memory is returned.
Rounding occurs identically to that done by F$SRqMem.

In user state, the system keeps track of memory allocated to a process and all blocks not
returned are automatically de-allocated by the system when a process terminates. In
system state, the process must explicitly return its memory.

SEE ALSO: F$SRqMem and F$Mem.

POSSIBLE
ERRORS: E$BPAddr

F$SRtMem Return System Memory

F$SSpd User-state System Calls

1 - 58 OS-9 System Calls

ASM CALL: OS9 F$SSpd

INPUT: d0.w = process ID to suspend

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SSpd is currently not implemented.

SEE ALSO: F$SetPri and F$SetSys.

CAVEATS: You can suspend a process by setting its priority below the system’s minimum
executable priority level (D_SysMin).

F$SSpd Suspend Process

User-state System Calls F$STime

OS-9 System Calls 1 - 59

ASM CALL: OS9 F$STime

INPUT: d0.l = current time (00hhmmss)
d1.l = current date (yyyymmdd)

OUTPUT: Time/date is set

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$STime sets the current system date/time and starts the system real-time clock to
produce time-slice interrupts. F$STime is accomplished by putting the date/time
packet in the system direct storage area, and then linking the clock module. The clock
initialization routine is called if the link is successful.

It is the function of the clock module to:

¿ Set up any hardware dependent functions to produce system tick interrupts (in-
cluding moving new date/time into hardware, if needed).

¡ Install a service routine to clear the interrupt when a tick occurs.

The OS-9 kernel keeps track of the current date and time in software to make clock
modules small and simple. Certain utilities and functions in OS-9 expect the clock to
be running with an accurate date and time. For this reason, always run F$STime when
the system is started. This is usually done in the system startup file.

SEE ALSO: F$Link and F$Time.

CAVEATS: The date and time are not checked for validity. On systems with a battery-backed clock,
it is usually only necessary to supply the year to the F$STime call. The actual date and
time are read from the real-time clock.

F$STime Set System Date and Time

F$STrap User-state System Calls

1 - 60 OS-9 System Calls

ASM CALL: OS9 F$STrap

INPUT: (a0) = Stack to use if exception occurs
 (or zero to use the current stack)
(a1) = Pointer to service request initialization table

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$STrap enters process local Error Trap routine(s) into the process descriptor dispatch
table. If an entry for a particular routine already exists, it is replaced.

The following exception errors may be caught by user programs:

Bus error
Address error
Illegal instruction
Zero Divide
CHK instruction
TRAPV instruction
Privilege violation
Line 1010 emulator
Line 1111 emulator

User programs can also catch the following exception errors on systems with a floating
point coprocessor (68020 or 68030 with 68881/882; or 68040):

Branch or set on unordered condition
Inexact result
Divide by zero
Underflow
Operand Error
Overflow
NAN signaled

If a user routine is not provided and one of these exceptions occur, the program is
aborted. An example initialization table might look like:

ExcpTbl dc.w T_TRAPV,OvfError-*-4
 dc.w T_CHK,CHKError-*-4
 dc.w -1 End of Table

F$STrap Set Error Trap Handler

User-state System Calls F$STrap

OS-9 System Calls 1 - 61

When an exception routine is executed, it is passed the following:

d7.w = Exception vector offset
(a0) = Program counter when exception occurred
 (same as R$PC(a5))
(a1) = Stack pointer when exception occurred (R$a7(a5))
(a5) = User’s register stack image when exception occurred
(a6) = user’s primary global data pointer

To return to normal program execution after handling the error, the exception must
restore all registers (from the register image at (a5)), and jump to the return program
counter. For some kinds of exceptions (especially bus and address errors) this may not
be appropriate. It is the user program’s responsibility to determine whether and where
to continue execution.

It is possible to disable an error exception handler. This is done by calling F$STrap
with an initialization table that specifies zero as the offset to the routine(s) that are to be
removed. For example, the following table removes user routines for the trapv and chk
error exceptions:

Table dc.w T_TRAPV, 0
 dc.w T_CHK, 0
 dc.w -1

CAVEATS: Beware of exceptions in exception handling routines. They are usually not re-entrant.

F$SUser User-state System Calls

1 - 62 OS-9 System Calls

ASM CALL: OS9 F$SUser

INPUT: d1.l = Desired group/user ID number

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SUser alters the current user ID to the specified ID. The following restrictions
govern the use of F$SUser:

• User number 0.0 may change their ID to anything without restriction.

• A primary module owned by user 0.0 may change its ID to anything without re-
striction.

• Any primary module may change its user ID to match the module’s owner.

All other attempts to change user ID number return an E$Permit error.

F$SUser Set User ID Number

User-state System Calls F$SysDbg

OS-9 System Calls 1 - 63

ASM CALL: OS9 F$SysDbg

INPUT: None

OUTPUT: None

ERROR cc = Carry set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SysDbg invokes the system level debugger, if one exists, to allow system-state
routines, such as device drivers, to be debugged. The system level debugger runs in
system state and effectively stops timesharing whenever it is active. It should never be
used when there are other users on the system. This call can be made only by a user with
a group.user ID of 0.0.

CAVEATS: You must enable the system debugger before installing breakpoints or attempting to
trace instructions. If no system debugger is available, the system is reset. The system
debugger takes over some of the exception vectors directly, in particular the Trace
exception. This makes it impossible to use the user debugger when the system
debugger is enabled.

F$SysDbg Call System Debugger

F$Time User-state System Calls

1 - 64 OS-9 System Calls

ASM CALL: OS9 F$Time

INPUT: d0.w = Format 0 = Gregorian
1 = Julian
2 = Gregorian with ticks
3 = Julian with ticks

OUTPUT: d0.l = Current time
d1.l = Current date
d2.w = day of week (0 = Sunday to 6 = Saturday)
d3.l = tick rate/current tick (if requested)

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Time returns the current system date and time. In the (normal) Gregorian format,
time is expressed as 00hhmmss, and date as yyyymmdd. The Julian format expresses
time as seconds since midnight, and date as the Julian day number. You can use this to
determine the elapsed time of an event. If ticks are requested, the clock tick rate in ticks
per second is returned in the most significant word of d3. The least significant word
contains the current tick.

The following chart illustrates the values returned in the registers:

SEE ALSO: F$STime and F$Julian.

CAVEATS: F$Time returns a date and time of zero (with no error) if no previous call to F$STime
is made. A tick rate of zero indicates the clock is not running.

F$Time Get System Date and Time

Register

d0.l

(long) 0-86399

day (1-31)

Julian day
month (1-12)d1.l
year (integer)byte

second (0-59)

minute (0-59)

seconds sincehour (0-23)

zero byte

Julian FormatGregorian Format

2-3
1

0

0

1

2

3

midnight

number (long)

Offset

User-state System Calls F$TLink

OS-9 System Calls 1 - 65

ASM CALL: OS9 F$TLink

INPUT: d0.w = User Trap Number (1-15)
d1.l = Optional memory override
(a0) = Module name pointer
 If (a0)=0 or [(a0)]=0, trap handler is unlinked.
 Other parameters may be required for specific trap handlers.

OUTPUT: (a0) = Updated past module name
(a1) = Trap library execution entry point
(a2) = Trap module pointer
Other values may be returned by specific trap handlers

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: You can use user traps as a convenient way to link into a standard set of library routines
at execution time. This provides the advantage of keeping user programs small, and
automatically updating programs that use the library code if it is changed (without
having to re-compile or re-link the program itself). Most Microware utilities use one
or more trap libraries.

F$TLink attempts to link, or load, the named module, installing a pointer to it in the
user’s process descriptor for subsequent use in trap calls. If a trap module already exists
for the specified trap code, an error is returned. OS-9 allocates and initializes static
storage for the trap handler, if necessary. You can remove traps by passing a null
pointer.

A user program calls a trap routine using the following assembly language directive:

tcall N,Function

This is the equivalent to:

trap #N
dc.w Function

“N” can be 1 to 15 (specifying which user trap vector to use). The function code is not
used by OS-9, except that it is passed to the trap handler, and the program counter is
skipped past it.

F$TLink Install User Trap Handler Module

F$TLink User-state System Calls

1 - 66 OS-9 System Calls

F$TLink allows the program to delay installation of the handler until a trap is actually
used in the program. If a user program executes a user trap call before the
corresponding F$TLink call has been made, the system executes the user’s default trap
exception entry point (specified in the module header) if one exists.

SEE ALSO: Chapter 5 on User Trap Handlers.

CAVEAT: System-state processes should not attempt to use trap handlers.

User-state System Calls F$Trans

OS-9 System Calls 1 - 67

ASM CALL: OS9 F$Trans

INPUT: d0.l = size of block to translate
d1.l = mode: 0 - local CPU address to external bus addr
 1 - external bus address to local CPU addr
(a0) = address of block

OUTPUT: d0.l = size of block translated
(a0) = translated address of block

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: On systems with dual-ported memory, a memory location may appear at different
addresses depending upon whether it is accessed via the “local” CPU bus or the
system’s external bus. You can use the F$Trans request to translate an address to or
from its external bus address.

F$Trans is used when the external bus address must be passed to hardware devices,
such as DMA-type controllers. Using the local CPU bus address is faster and reduces
the traffic on the external bus. Generally, you should only use the system’s external bus
address if it is not possible to use the local CPU bus address.

If the specified source block is non-linear with respect to its destination mapping,
F$Trans returns the maximum number of bytes accessible at the translated address. In
this case, subsequent calls to F$Trans must be made until the entire block has been
successfully translated. This is rare, since OS-9’s memory management routines do not
allocate non-linear blocks.

SEE ALSO: OS-9 Technical Overview, Chapter 2, sections on Init module memory definitions
and Colored Memory.

POSSIBLE
ERRORS: E$UnkSvc, E$Param, and E$IBA.

F$Trans Translate Memory Address

F$UAcct User-state System Calls

1 - 68 OS-9 System Calls

ASM CALL: OS9 F$UAcct

INPUT: d0.w = Function code (F$Fork, F$Chain, F$Exit)
(a0) = Process descriptor pointer

OUTPUT: none

ERROR cc = carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$UAcct is a user-defined system call which may be installed by an OS9P2 module. It
is called in system state at the beginning and end of every process, in other words,
whenever F$Fork, F$Chain, or F$Exit is executed.

The kernel’s fork and chain routines make an F$UAcct request just before a new
process is inserted in the active queue. Since the new process is ready to execute, its
user number, priority, primary module, parameters, etc. are known to F$UAcct. This
provides a variety of opportunities for a F$UAcct routine. For example:

• A system administrator could keep track of every program run and who ran
what program.

• F$UAcct could automatically lower the priority of particular programs.

• F$UAcct could keep a log of everything a specific user does.

NOTE: If F$UAcct returns an error during F$Fork, the new process terminates with
the error code in d1.w.

OS-9’s process termination routine makes a F$UAcct request just before a process’s
resources are returned to the system. The process descriptor contains information about
how much CPU time was consumed, how many bytes were read or written, how many
system calls were made, etc. Once again, F$UAcct could be used to record or react to
this information. The system ignores any F$UAcct error returned at the end of a
process.

NOTE: The values in all registers except d0 and d1 must be preserved.

SEE ALSO: F$SSvc; OS-9 Technical Overview, Chapter 2 (section on installing system-state
routines).

POSSIBLE ERRORS: E$UnkSvc and E$Param.

F$UAcct User Accounting

User-state System Calls F$UnLink

OS-9 System Calls 1 - 69

ASM CALL: OS9 F$UnLink

INPUT: (a2) = Address of the module header

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$UnLink tells OS-9 that the module is no longer needed by the calling process. The
module’s link count is decremented. When the link count equals zero, the module is
removed from the module directory and its memory is de-allocated. When several
modules are loaded together as a group, modules are only removed when the link count
of all modules in the group have zero link counts.

Device driver modules in use and certain system modules cannot be unlinked.

SEE ALSO: F$UnLoad

CAVEATS: Repetitive UnLink calls to the same module artificially lower its link count, regardless
of the number of current users. If the link count becomes zero while the module is being
used, it is removed from the module directory and its memory de-allocated. This causes
severe problems for whoever is currently using the module, and may crash the system.

F$UnLink Unlink Module by Address

F$UnLoad User-state System Calls

1 - 70 OS-9 System Calls

ASM CALL: OS9 F$UnLoad

INPUT: d0.w = Module type/language
(a0) = Module name pointer

OUTPUT: (a0) = Updated past module name

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$UnLoad locates the module in the module directory, decrements its link count, and
removes it from the directory if the count reaches zero. Note that this call differs from
F$UnLink in that the pointer to the module name is supplied rather than the address of
the module header.

SEE ALSO: F$UnLink

CAVEAT: Repetitive UnLoad calls to the same module artificially lower its link count, regardless
of how many users are currently using it. If the link count becomes zero while the
module is being used, it is removed from the module directory and its memory de-
allocated. This causes severe problems for whoever is currently using the module, and
may crash the system.

F$UnLoad Unlink Module by Name

User-state System Calls F$Wait

OS-9 System Calls 1 - 71

ASM CALL: OS9 F$Wait

INPUT: None

OUTPUT: d0.w = Terminating child process’s ID
d1.w = Child process’s exit status code

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Wait causes the calling process to deactivate until a child process terminates by
executing a F$Exit system call, or otherwise is terminated. The child’s ID number and
exit status are returned to the parent. If the child process died due to a signal, the exit
status word (register d1) is the signal code.

If the caller has several child processes, the caller is activated when the first one dies,
so one Wait system call is required to detect termination of each child.

If a child process died before the Wait call, the caller is reactivated immediately. Wait
returns an error only if the caller has no child processes.

SEE ALSO: F$Exit, F$Send, and F$Fork.

CAVEATS: The process descriptors for child processes are not returned to free memory until their
parent process does a F$Wait system call or terminates.

If a signal is received by a process waiting for children to terminate, it is activated. In
this case, d0.w contains zero, since no child process has terminated.

POSSIBLE
ERRORS: E$NoChld

F$Wait Wait for Child Process to Terminate

End of Chapter 1

NOTES User-state System Calls

1 - 72 OS-9 System Calls

NOTES

I/O System Calls I$Attach

OS-9 System Calls 2 - 1

ASM CALL: OS9 I$Attach

INPUT: d0.b = Access mode (Read_, Write_, Updat_)
(a0) = Device name pointer

OUTPUT: (a2) = Address of the device table entry

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Attach causes an I/O device to become known to the system. You use it to attach a
new device to the system, or to verify that it is already attached.

The device’s name string is used to search the system module directory to see if a device
descriptor module with the same name is in memory (this is the name by which the
device is known). The descriptor module contains the name of the device’s file
manager, device driver, and other related information.

If the descriptor is found and the device is not already attached, OS-9 links to its file
manager and device driver. It then places their addresses in a new device table entry.
Any permanent storage needed by the device driver is allocated, and the driver’s
initialization routine is called to initialize the hardware. If the device has already been
attached, it is not re-initialized.

The access mode parameter may be used to verify that subsequent read and/or write
operations are permitted. An Attach system call is not required to perform routine I/O.
It does not reserve the device in question; I$Attach simply prepares it for subsequent
use by any process.

The kernel attaches all devices at open, and detaches them at close.

NOTE: Attach and Detach for devices are similar to Link and Unlink for modules;
they are usually used together. However, system performance can improve slightly if
all devices are attached at startup. This increments each device’s use count and
prevents the device from being re-initialized every time it is opened. This also has the
advantage of allocating the static storage for devices all at once, which minimizes
memory fragmentation. If this is done, the device driver termination routine is never
executed.

I$Attach Attach a New Device to the System

I$Attach I/O System Calls

2 - 2 OS-9 System Calls

SEE ALSO: I$Detach

POSSIBLE
ERRORS: E$DevOvf, E$BMode, E$DevBsy, and E$MemFul.

I/O System Calls I$ChgDir

OS-9 System Calls 2 - 3

ASM CALL: OS9 I$ChgDir

INPUT: d0.b = Access mode (read/write/exec)
(a0) = Address of the pathlist

OUTPUT: (a0) = Updated past pathname

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: ChgDir changes a process’s working directory to another directory file specified by the
pathlist. Depending on the access mode given, either the execution or the data directory
(or both) may change. The file specified must be a directory file, and the caller must
have access permission for the specified mode.

ACCESS MODES: 1 = Read
 2 = Write
 3 = Update (read and write)
 4 = Execute

If the access mode is read, write, or update, the current data directory changes. If the
access mode is execute, the current execution directory changes. Both can change
simultaneously.

NOTE: The shell CHD directive uses UPDATE mode, which means you must have
both read and write permission to change directories from the shell. This is a
recommended practice.

POSSIBLE
ERRORS: E$BPNam and E$BMode.

I$ChgDir Change Working Directory

I$Close I/O System Calls

2 - 4 OS-9 System Calls

ASM CALL: OS9 I$Close

INPUT: d0.w = Path number

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Close terminates the I/O path specified by the path. The path number is no longer
valid for any OS-9 calls unless it becomes active again through an Open, Create, or
Dup system call. When pathlists to non-sharable devices are closed, the devices
become available to other requesting processes. If this is the last use of the path (that
is, it has not been inherited or duplicated by I$Dup), all OS-9 internally managed
buffers and descriptors are deallocated.

NOTE: The OS-9 F$Exit service request automatically closes any open paths. By
convention, standard I/O paths are not closed unless it is necessary to change the
files/devices they correspond to.

SEE ALSO: I$Detach

CAVEATS: I$Close does an implied I$Detach call. If this causes the device use count to become
zero, the device termination routine is executed.

POSSIBLE
ERRORS: E$BPNum

I$Close Close a Path to a File/Device

I/O System Calls I$Create

OS-9 System Calls 2 - 5

ASM CALL: OS9 I$Create

INPUT: d0.b = Access mode (S, I, E, W, R)
d1.w = File attributes (access permission)
d2.l = Initial allocation size (optional)
(a0) = Pathname pointer

OUTPUT: d0.w = Path number
(a0) = Updated past the pathlist

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Create creates a new file. On multi-file devices, the new file name is entered in the
directory structure, and Create is synonymous with Open.

The access mode parameter passed in register d0.b must have the write bit set if any
data is to be written to the file. The file is given the attributes passed in the register
d1.w. The individual bits are defined as follows:

If the execute bit (bit 2) of the access mode byte is set, directory searching begins with
the working execution directory instead of the working data directory.

The path number returned by OS-9 identifies the file in subsequent I/O service requests
until the file is closed.

WRITE automatically allocates file space for the file. The SETSTAT call (SS_Size)
explicitly allocates file space. If the size bit (bit 5) is set, an initial file size estimate
may be passed in d2.l.

An error occurs if the pathlist specifies a file name that already exists. You cannot use
I$Create to make directory files (see I$MakDir).

Create causes an implicit I$Attach call. If the device has not previously been attached,
the device’s initialization routine is executed.

I$Create Create a Path to New File

Mode Bits (d0.w)

0 = read
1 = write
2 = execute
5 = initial file size
6 = single user

Attribute Bits (d1.w)

0 = owner read permit
1 = owner write permit
2 = owner execute permit
3 = public read permit
4 = public write permit
5 = public execute permit
6 = non-sharable file

I$Create I/O System Calls

2 - 6 OS-9 System Calls

SEE ALSO: I$Attach, I$Open, I$Close, and I$MakDir.

CAVEATS: The caller is made the owner of the file. To maintain compatibility with OS-9/6809
disk formats, there is only space for two bytes of owner ID. The LS byte of the user’s
group and the LS byte of the user’s ID are used as the owner ID. All user’s with the
same group ID may access the file as the owner.

If an initial file size is specified with I$Create, the exact amount specified may not be
allocated. You must execute a SS_Size SetStat after creating the file to ensure that
sufficient space was allocated.

POSSIBLE
ERRORS: E$PthFul and E$BPNam.

I/O System Calls I$Delete

OS-9 System Calls 2 - 7

ASM CALL: OS9 I$Delete

INPUT: d0.b = Access mode (read/write/exec)
(a0) = Pathname pointer

OUTPUT: (a0) = Updated past pathlist

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Delete deletes the file specified by the pathlist. The caller must have non-sharable
write access to the file (the file may not already be open) or an error results. An attempt
to delete a non-multifile device results in an error.

The access mode is used to specify the data or execution directory (but not both) in the
absence of a full pathlist. If the access mode is read, write, or update, the current data
directory is assumed. If the execute bit is set, the current execution directory is
assumed. Note that if a full pathlist is specified, that is, a pathlist beginning with a slash
(/), the access mode is ignored.

SEE ALSO: I$Detach, I$Attach, I$Create, and I$Open.

POSSIBLE
ERRORS: E$BPNam

I$Delete Delete a File

I$Detach I/O System Calls

2 - 8 OS-9 System Calls

ASM CALL: OS9 I$Detach

INPUT: (a2) = Address of the device table entry

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Detach removes a device from the system device table, if not in use by any other
process. If this is the last use of the device, the device driver’s termination routine is
called, and any permanent storage assigned to the driver is de-allocated. The device
driver and file manager modules associated with the device are unlinked and may be
lost if not in use by another process. It is crucial for the termination routine to remove
the device from the IRQ system.

You must use the I$Detach service request to un-attach devices that were attached with
the I$Attach service request. Both of these are used mainly by the kernel and are of
limited use to the typical user. SCF also uses Attach/Detach to set up its second (echo)
device.

Most devices are attached at startup and remain attached. Seldom used devices can be
attached to the system and used for a while, then detached to free system resources
when no longer needed.

SEE ALSO: I$Attach and I$Close.

CAVEATS: If an invalid address is passed in (a2), the system may crash or undergo severe damage.

I$Detach Remove a Device from the System

I/O System Calls I$Dup

OS-9 System Calls 2 - 9

ASM CALL: OS9 I$Dup

INPUT: d0.w = Path number of path to duplicate

OUTPUT: d0.w = New number for the same path

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: Given the number of an existing path, I$Dup returns a synonymous path number for the
same file or device. I$Dup always uses the lowest available path number. For
example, if you do I$Close on path #0, then do I$Dup on path #4, path #0 is returned
as the new path number. In this way, the standard I/O paths may be manipulated to
contain any desired paths.

The shell uses this service request when it redirects I/O. Service requests using either
the old or new path numbers operate on the same file or device.

CAVEATS: This only increments the use count of a path descriptor and returns a synonymous path
number. The path descriptor is NOT copied. It is usually not a good idea for more than
one process to be doing I/O on the same path concurrently. On RBF files, unpredictable
results may occur.

POSSIBLE
ERRORS: E$PthFul and E$BPNum.

I$Dup Duplicate a Path

I$GetStt: SS_DevNm I/O System Calls

2 - 10 OS-9 System Calls

ASM CALL: OS9 I$GetStt

INPUT: d0.w = Path number
d1.w = Function code
Others = dependent on function code

OUTPUT: Dependent on function code

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: This is a wild card call used to handle individual device parameters that are not uniform
on all devices, or are highly hardware dependent. The exact operation of this call
depends on the device driver and file manager associated with the path.

A typical use is to determine a terminal’s parameters (echo on/off, delete character,
etc.). It is commonly used in conjunction with the SetStt call, which sets the device
operating parameters.

The mnemonics for the status codes are found in the relocatable library sys.l or usr.l.
Codes 0-127 are reserved for Microware use. The remaining codes and their parameter
passing conventions are user definable (see the OS-9 Technical Overview section on
device drivers in Chapter 3). Presently defined function codes are listed below.

POSSIBLE
ERRORS: E$BPNum

I$GetStt FUNCTION CODES:

INPUT: d0.w = Path number
d1.w = #SS_DevNm function code
(a0) = Address of 32 byte area for device name

OUTPUT: Device name in 32 byte storage area, null terminated

INPUT: d0.w = Path number
d1.w = #SS_EOF function code

I$GetStt Get File/Device Status

SS_DevNum Return Device Name (ALL)

SS_EOF Test for End of File (RBF, SCF, PIPE)

I/O System Calls I$Attach

OS-9 System Calls 2 - 11

OUTPUT: d1.l = 0 If not EOF, (SCF never returns EOF)

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code (E$EOF, if end of file)

INPUT: d0.w = Path number
d1.w = #SS_CDFD function code
d2.w = Number of bytes to copy
(a0) = Pointer to buffer area for file
 descriptor

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: SS_CDFD reads the file descriptor describing the path number. The file
descriptor may be read for information purposes only, as there are no user
changeable parameters.

INPUT: d0.w = Path number
d1.w = #SS_FD function code
d2.w = Number of bytes to copy(<=logical sector size of media)
(a0) = Address of buffer area for FD

OUTPUT: File descriptor copied into buffer

FUNCTION: Use SS_FD to inspect the file descriptor information (for example,
FD_OWN and FD_DAT) and the file segment list.

SS_CDFD Return File Descriptor (CDFM)

SS_FD Read File Descriptor Sector (RBF, PIPE)

I$GetStt: SS_FDInf, SS_Free, SS_Opt I/O System Calls

2 - 12 OS-9 System Calls

INPUT: d0.w = Path number
d1.w = #SS_FDInf function code
d2.w = Number of bytes to copy (<=256)
d3.l = FD sector address
(a0) = Address of buffer area for FD

OUTPUT: File descriptor copied into buffer

NOTE: If SS_FDInf is called in user state, the caller must be a super-group user. If
it is called in system state, the caller does not have to be a super-group user.

INPUT: d0.l = Path number
d1.w = #SS_Free function code

OUTPUT: d0.l = Size of free space on device, in bytes

INPUT: d0.w = Path number
d1.w = #SS_Opt function code
(a0) = Address to put a 128 byte status packet

OUTPUT: Status packet copied to buffer

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: SS_Opt reads the option section of the path descriptor and copies it into the
128 byte area pointed to by (a0). It is typically used to determine the current
settings for echo, auto line feed, etc. For a complete description of the status
packet, refer to Chapter 3 of the OS-9 Technical Overview, the section
on file manager path descriptors.

SS_FDInf Get Specified File Descriptor Sector (RBF)

SS_Free Return Amount of Free Space on Device (NRF, NVRAM file mgr.)

SS_Opt Read PD_OPT: The Path Descriptor Option Section. (All)

I/O System Calls I$GetStt: SS_Pos, SS_Ready, SS_Size

OS-9 System Calls 2 - 13

INPUT: d0.w = Path number
d1.w = #SS_Pos function code

OUTPUT: d2.l = Current file position

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

INPUT: d0.w = Path number
d1.w = #SS_Ready function code

OUTPUT: d1.l = Number of input characters available on SCF or pipe
 devices.
 RBF devices always return carry clear, d1.l=1

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code (E$NotRdy if no data is

 available)

INPUT: d0.w = Path number
d1.w = #SS_Size function code

OUTPUT: d2.l = Current file size

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

SS_Pos Get Current File Position (RBF, PIPE)

SS_Ready Test for Data Ready (RBF, SCF, PIPE)

SS_Size Return Current File Size (RBF, PIPE)

I$GetStt: SS_VarSect I/O System Calls

2 - 14 OS-9 System Calls

INPUT: d0.w = path number
d1.w - #SS_VarSect function code

OUTPUT: none

FUNCTION: SS_VarSect is an internal call between RBF and a driver. If the driver
does not return an error, the logical sector size of the media is specified in
PD_SSize. If the driver returns an error, and the error is E$UnkSvc, RBF
sets the path’s logical sector size to 256 bytes and ignores PD_SSize. If
any other error is returned, the path open is aborted and the error is returned
to the caller.

SS_VarSect Query Support for Variable Logical Sector Sizes (RBF)

I/O System Calls I$MakDir

OS-9 System Calls 2 - 15

ASM CALL: OS9 I$MakDir

INPUT: d0.b = Access mode (see below)
d1.w = Access permissions
d2.l = Initial Allocation Size (Optional)
(a0) = Pathname pointer

OUTPUT: (a0) = Updated past pathname

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$MakDir is the only way to create a new directory file. It creates and initializes a new
directory as specified by the pathlist. The new directory file contains no entries, except
for an entry for itself (specified by a dot (.)) and its parent directory (specified by double
dot (..)). Makdir fails on non-multi-file devices. If the execution bit is set, OS-9 begins
searching for the file in the working execution directory (unless the pathlist begins with
a slash).

The caller is made the owner of the directory. MakDir does not return a path number
because directory files are not opened by this request (use I$Open to do so). The new
directory automatically has its directory bit set in the access permission attributes. The
remaining attributes are specified by the bytes passed in register d1.w which have
individual bits defined as listed below (if the bit is set, access is permitted):

POSSIBLE
ERRORS: E$BPNam and E$CEF.

I$MakDir Make a New Directory

Mode Bits (d0.b)
0 = read
1 = write
2 = execute
5 = initial directory size
7 = directory

Attribute Bits (d1.w)
0 = owner read permit
1 = owner write permit
2 = owner execute permit
3 = public read permit
4 = public write permit
5 = public execute permit
6 = non-sharable file
7 = directory

I$Open I/O System Calls

2 - 16 OS-9 System Calls

ASM CALL: OS9 I$Open

INPUT: d0.b = Access mode (D S E W R)
(a0) = Pathname pointer

OUTPUT: d0.w = Path number
(a0) = Updated past pathname

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Open opens a path to an existing file or device as specified by the pathlist. A path
number is returned which is used in subsequent service requests to identify the path. If
the file does not exist, an error is returned.

The access mode parameter specifies which subsequent read and/or write operations are
permitted as follows (if the bit is set, access is permitted):

NOTE: A non-directory file may be opened with no bits set. This allows you to
examine the attributes, size, etc. with the GetStt system call, but does not permit any
actual I/O on the path.

For RBF devices, use read mode instead of update if the file is not going to be modified.
This inhibits record locking, and can dramatically improve system performance if more
than one user is accessing the file. The access mode must conform to the access
permissions associated with the file or device (see I$Create).

If the execution bit mode is set, OS-9 begins searching for the file in the working
execution directory (unless the pathlist begins with a slash).

If the single user bit is set, the file is opened for non-sharable access even if the file is
sharable.

I$Open Open a Path to a File or Device

Mode Bits
0 = read
1 = write
2 = execute
6 = open file for non sharable use
7 = open directory file

I/O System Calls I$Open

OS-9 System Calls 2 - 17

Files can be opened by several processes (users) simultaneously. Devices have an
attribute that specifies whether or not they are sharable on an individual basis.

Open always uses the lowest path number available for the process.

SEE ALSO: I$Attach, I$Create and I$Close.

CAVEATS: Directory files may be opened only if the Directory bit (bit 7) is set in the access mode.

POSSIBLE
ERRORS: E$PthFul, E$BPNam, E$Bmode, E$FNA, E$PNNF, and E$Share.

I$Read I/O System Calls

2 - 18 OS-9 System Calls

ASM CALL: OS9 I$Read

INPUT: d0.w = Path number
d1.l = Maximum number of bytes to read
(a0) = Address of input buffer

OUTPUT: d1.l = Number of bytes actually read

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Read reads a specified number of bytes from the specified path number. The path
must previously have been opened in read or update mode. The data is returned exactly
as read from the file/device, without additional processing or editing such as backspace,
line delete, etc. If there is not enough data in the file to satisfy the read request, fewer
bytes are read than requested, but an end of file error is not returned.

After all data in a file has been read, the next I$Read service request returns an end of
file error.

SEE ALSO: I$ReadLn

CAVEATS: The keyboard X-ON/X-OFF characters may be filtered out of the input data on SCF-
type devices unless the corresponding entries in the path descriptor are set to zero. You
may wish to modify the device descriptor so that these values in the path descriptor are
initialized to zero when the path is opened. SCF devices usually terminate the read
when a carriage return is reached.

For RBF devices, if the file is open for update, the record read is locked out. See the
Record Locking section in the RBF chapter of the OS-9 Technical I/O Manual.

The number of bytes requested is read unless:

• The end-of-file is reached

• An end-of-record occurs (SCF only)

• An error condition occurs

POSSIBLE
ERRORS: E$BPNum, E$Read, E$BMode, and E$EOF.

I$Read Read Data from a File or Device

I/O System Calls I$ReadLn

OS-9 System Calls 2 - 19

ASM CALL: OS9 I$ReadLn

INPUT: d0.w = Path number
d1.l = Maximum number of bytes to read
(a0) = Address of input buffer

OUTPUT: d1.l = Actual number of bytes read

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: ReadLn is similar to Read except it reads data from the input file or device until an
end-of-line character is encountered. ReadLn also causes line editing to occur on SCF-
type devices. Line editing refers to backspace, line delete, echo, automatic line feed,
etc. Some devices (SCF) may limit the number of bytes that may be read with one call.

SCF requires that the last byte entered be an end-of-record character (normally carriage
return). If more data is entered than the maximum specified, it is not accepted and a
PD_OVF character (normally bell) is echoed. For example, a ReadLn of exactly one
byte accepts only a carriage return to return without error and beeps when other keys
are pressed.

After all data in a file has been read, the next I$ReadLn service request returns an end
of file error.

SEE ALSO: I$Read

POSSIBLE
ERRORS: E$BPNum, E$Read, and E$BMode.

I$ReadLn Read a Text Line with Editing

I$Seek I/O System Calls

2 - 20 OS-9 System Calls

ASM CALL: OS9 I$Seek

INPUT: d0.w = Path number
d1.l = New position

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Seek repositions the path’s file pointer which is the 32-bit address of the next byte
in the file to be read or written. I$Seek usually does not initiate any physical
positioning of the media.

You can perform a Seek to any value even if the file is not large enough. Subsequent
writes automatically expand the file to the required size (if possible), but reads return
an end-of-file condition. NOTE: A Seek to address zero is the same as a rewind
operation.

Seeks to non-random access devices are usually ignored and return without error.

CAVEATS: On RBF devices, seeking to a new disk sector causes the internal sector buffer to be
rewritten to disk if it has been modified. Seek does not change the state of record locks.
Beware of seeking to a negative position. RBF takes negatives as large positive
numbers.

POSSIBLE
ERRORS: E$BPNum

I$Seek Reposition the Logical File Pointer

I/O System Calls I$SetStt

OS-9 System Calls 2 - 21

ASM CALL: OS9 I$SetStt

INPUT: d0.w = Path number
d1.w = Function code
Others = Function code dependent

OUTPUT: Function code dependent

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: This is a “wild card” system call used to handle individual device parameters that are
not uniform on all devices or are highly hardware dependent. The exact operation of
this call depends on the device driver and file manager associated with the path.

A typical use is to set a terminal’s parameters for backspace character, delete character,
echo on/off, null padding, paging, etc. It is commonly used in conjunction with the
GetStt service request which reads the device’s operating parameters.

The mnemonics for the status codes are found in the relocatable library sys.l or usr.l.
Codes 0-127 are reserved for Microware use. The remaining codes and their parameter
passing conventions are user definable (see the OS-9 Technical Overview section on
device drivers in Chapter 3). Presently defined function codes are listed below.

POSSIBLE
ERRORS: E$BPNum

I$SetStt Set File/Device Status

I$SetStt: SS_Attr, SS_Close, SS_DCOff I/O System Calls

2 - 22 OS-9 System Calls

I$SETSTT FUNCTION CODES:

INPUT: d0.w = Path number
d1.w = #SS_Attr function code
d2.w = New attributes

OUTPUT: none

FUNCTION: SSAttr changes a file’s attributes to the new value, if possible. It is not
permitted to set the dir bit of a non-directory file, or to clear the dir bit of a
non-empty directory.

INPUT: d0.w = path number
d1.w = SS_Close function code

OUTPUT: none

FUNCTION: SS_Close is an internal call for drivers.

INPUT: d0.w = path number
d1.w = SS_DCOff function code
d2.w = Signal code to be sent

OUTPUT: none

FUNCTION: When a modem has finished receiving data from a carrier, the Data Carrier
Detect line goes false. SS_DCOff sends a signal code when this happens.
SS_DCOn sends a signal when the line goes true.

SS_Attr Set the File Attributes (RBF, PIPE)

SS_Close Notifies Driver that a Path has been Closed (SCF, RBF, SBF)

SS_DCOff Sends Signal when Data Carrier Detect Line Goes False (SCF)

I/O System Calls I$SetStt: SS_DCon, SS_DsRTS, SS_EnRTS

OS-9 System Calls 2 - 23

INPUT: d0.w = path number
d1.w = SS_DCOn function code
d2.w = Signal code to be sent

OUTPUT: none

FUNCTION: When a modem receives a carrier, the Data Carrier Detect line goes true.
SS_DCOn sends a signal code when this happens. SS_DCOff sends a
signal when the line goes false.

INPUT: d0.w = path number
d1.w = SS_DsRTS function code

OUTPUT: none

FUNCTION: SS_DsRTS tells the driver to negate the RTS hardware handshake line.

INPUT: d0.w = path number
d1.w = SS_EnRTS function code

OUTPUT: none

FUNCTION: SS_EnRTS tells the driver to negate the RTS hardware handshake line.

SS_DCon Sends Signal when Data Carrier Detect Line Goes True (SCF)

SS_DsRTS Disables RTS Line (SCF)

SS_EnRTS Enables RTS Line (SCF)

I$SetStt: SS_Feed, SS_FD I/O System Calls

2 - 24 OS-9 System Calls

INPUT: d0.w = path number
d1.w = SS_Feed function code
d2.l = # of blocks to erase

OUTPUT: none

FUNCTION: SS_Feed erases a portion of the tape. The amount of tape erased depends
on the capabilities of the hardware used. SBF attempts to use the following:
If -1 is passed in d2, SBF erases until the end-of-tape is reached. If d2
receives a positive parameter, SBF erases the amount of tape equivalent to
that number of blocks. This depends on both the hardware used and the
driver.

INPUT: d0.w = Path Number
d1.w = #SS_FD function code
(a0) = Address of FD sector image

OUTPUT: none

FUNCTION: SS_FD changes FD sector data. The path must be open for write.

NOTE: You can only change FD_OWN, FD_DAT, and FD_Creat. These
are the only fields written back to disk. Only the super user can change the
file’s owner ID.

SS_FD should normally be used with GetStat (SS_FD) to read the FD
before attempting to change FD sector data.

SS_Feed Erase Tape (SBF)

SS_FD Write File Description Sector (RBF)

I/O System Calls I$SetStt: SS_Lock, SS_Open

OS-9 System Calls 2 - 25

INPUT: d0.w = Path Number
d1.w = #SS_Lock function code
d2.l = Lockout size

OUTPUT: none

FUNCTION: SS_Lock locks out a section of the file from the current file pointer position
up to the specified number of bytes.

If 0 bytes are requested, all locks are removed (Record Lock, EOF Lock, and
File Lock).

If $FFFFFFFF bytes are requested, then the entire file is locked out
regardless of where the file pointer is. This is a special type of file lock that
remains in effect until released by SS_Lock(0), a read or write of zero
bytes, or the file is closed.

There is no way to gain file lock using only read or write system calls.

INPUT: d0.w = path number
d1.w = SS_Open function code

OUTPUT: none

FUNCTION: SS_Open is an internal call for drivers.

SS_Lock Lock out a Record (RBF)

SS_Open Notifies Driver that a Path has been Opened

I$SetStt: SS_Opt, SS_Relea, SS_Reset I/O System Calls

2 - 26 OS-9 System Calls

INPUT: d0.w = Path number
d1.w = #SS_Opt function code
(a0) = Address of a 128 byte status packet

OUTPUT: none

FUNCTION: SS_Opt writes the option section of the path descriptor from the 128 byte
status packet pointed to by (a0). It is typically used to set the device
operating parameters (echo, auto line feed, etc.). This call is handled by the
file managers, and only copies values that are appropriate to be changed by
user programs.

INPUT: d0.w = path number
d1.w = SS_Relea function code

OUTPUT: none

FUNCTION: SS_Relea releases the device from any SS_SSig, SS_DCOn, or
SS_DCOff requests made by the calling process on this path.

INPUT: d0.w = Path number
d1.w = #SS_Reset function code

OUTPUT: none

FUNCTION: For RBF, this directs the disk head to track zero. It is used for formatting and
for error recovery. For SBF, this rewinds the tape.

SS_Opt Write Option Selection of Path Descriptor (ALL)

SS_Relea Release Device (SCF, PIPE)

SS_Reset Restore Head to Track Zero (RBF, SBF)

I/O System Calls I$SetStt:SS_RFM, SS_Size, SS_Skip

OS-9 System Calls 2 - 27

INPUT: d0.w = path number
d1.w = SS_RFM function code
d2.l = # of tape marks

OUTPUT: none

FUNCTION: SS_RFM skips the number of tape marks specified in d2. If d2 is negative,
the tape is rewound the specified number of marks.

INPUT: d0.w = Path number
d1.w = #SS_Size function code
d2.l = Desired file size

OUTPUT: none

FUNCTION: SS_Size sets the file’s size.

For pipe files, you can use SS_Size to reset the pipe path (d2.1=0),
provided the pipe has no active readers or writers. Any other value in d2.1
is ignored.

INPUT: d0.w = path number
d1.w = SS_Skip function code
d2.l = # of blocks to skip

OUTPUT: none

FUNCTION: SS_Skip skips the number of blocks specified in d2. If the number is
negative, the tape is rewound the specified number of blocks.

SS_RFM Skip Tape Marks (SBF)

SS_Size Set File Size (RBF, PIPE)

SS_Skip Skip Blocks (SBF)

I$SetStt: SS_SSig, SS_Ticks I/O System Calls

2 - 28 OS-9 System Calls

INPUT: d0.w = Path number
d1.w = SS_SSig function code
d2.w = User defined signal code

OUTPUT: none

FUNCTION: SS_SSig sets up a signal to send to a process when an interactive device or
pipe has data ready. SS_SSig must be reset each time the signal is sent.
The device or pipe is considered busy and returns an error if any read request
arrives before the signal is sent. Write requests to the device are allowed in
this state.

INPUT: d0.w = path number
d1.w = #SS_Ticks function code
d2.l = Delay interval

OUTPUT: none

FUNCTION: Normally, if a read or write request is issued for a part of a file that is locked
out by another user, RBF sleeps indefinitely until the conflict is removed.

You can use SS_Ticks to return an error (E$Lock) to the user program if
the conflict still exists after the specified number of ticks have elapsed.

The delay interval is used directly as a parameter to RBF’s conflict sleep
request. The value zero (RBF’s default) causes a sleep forever until the
record is released. A value of one means that if the record is not released
immediately, an error is returned. If the high order bit is set, the lower 31
bits are converted from 256th of a second into ticks before sleeping. This
allows programmed delays to be independent of the system clock rate.

INPUT: d0.w = path number
d1.w = SS_WFM function code
d2.l = # of tape marks

OUTPUT: none

SS_SSig Send Signal on Data Ready (SCF, PIPE)

SS_Ticks Wait Specified Number of Ticks for Record Release (RBF)

SS_WFM Write Tape Marks (SBF)

I/O System Calls I$SetStt: SS_WFM, SS_WTrk

OS-9 System Calls 2 - 29

FUNCTION: SS_WFM writes the number of tape marks specified in d2.

INPUT: d0.w = Path number
d1.w = #SS_WTrk function code
(a0) = Address of track buffer
 For hard disks and "autosize" media, this table
 contains 1 logical sector of data (pattern $E5).
 For floppy disks, this table contains the track’s
 physical data.
(a1) = Address of interleave table
 This table contains byte entries of LSN’s ordered to
 match the requested interleave offset. NOTE: This is
 a "logical" table and does not reflect the PD_SOffs
 base sector number.
d2 = Track number
d3.w = Side/density
 The low order byte has 3 bits which can be set:
 Bit 0 = SIDE (0=side zero;1=side one)
 Bit 1 = DENSITY (0=single;1=double)
 Bit 2 = TRACK DENSITY (0=single;1=double)
 The high order byte contains the side number.
d4 = Interleave value

OUTPUT: none

FUNCTION: SS_Wtrk causes a format track operation (used with most floppy disks) to
occur. For hard or floppy disks with a “format entire disk” command, this
formats the entire media only when side 0 of the first accessable track is
specified.

SS_WTrk Write (format) track (RBF)

I$Write I/O System Calls

2 - 30 OS-9 System Calls

ASM CALL: OS9 I$Write

INPUT: d0.w = Path number
d1.l = Number of bytes to write
(a0) = Address of buffer

OUTPUT: d1.l = Number of bytes actually written

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$Write outputs bytes to a file or device associated with the path number specified. The
path must have been opened or created in the write or update access modes.

Data is written to the file or device without processing or editing. If data is written past
the present end-of-file, the file is automatically expanded.

SEE ALSO: I$Open, I$Create, and I$WritLn.

CAVEATS: On RBF devices, any record that was locked is released.

POSSIBLE
ERRORS: E$BPNum, E$BMode, and E$Write.

I$Write Write Data to a File or Device

I/O System Calls I$WritLn

OS-9 System Calls 2 - 31

ASM CALL: OS9 I$WritLn

INPUT: d0.w = Path number
d1.l = Maximum number of bytes to write
(a0) = Address of buffer

OUTPUT: d1.l = Actual number of bytes written

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: I$WriteLn is similar to Write except it writes data until a carriage return character or
(d1) bytes are encountered. Line editing is also activated for character-oriented devices
such as terminals, printers, etc. The line editing refers to auto line feed, null padding at
end-of-line, etc.

The number of bytes actually written (returned in d1.l) does not reflect any additional
bytes that may have been added by file managers or device drivers for device control.
For example, if SCF appends a line feed and nulls after carriage return characters, these
extra bytes are not counted.

SEE ALSO: I$Open, I$Create, and I$Write; OS-9 Technical I/O Manual chapter on SCF
Drivers (line editing).

CAVEATS: On RBF devices, any record that was locked is released.

POSSIBLE
ERRORS: E$BPNum, E$BMode, and E$Write.

I$WritLn Write a Line of Text with Editing

End of Chapter 2

NOTES I/O System Calls

2 - 32 OS-9 System Calls

NOTES

System-state System Calls F$Alarm

OS-9 System Calls 3 - 1

ASM CALL: OS9 F$Alarm

INPUT: d0.l = Alarm ID (or zero)
d1.w = Function code
d2.l = Reserved, must be zero
d3.l = Time interval (or time)
d4.l = Date (when using absolute time)
(a0) = Register image

OUTPUT: d0.l = Alarm ID

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: When called from system state, F$Alarm causes the execution of a system-state
subroutine at a specified time. It is provided for such functions as turning off a disk
drive motor if the disk is not accessed for a period of time.

The register image pointed to by register (a0) contains an image of the registers to be
passed to the alarm subroutine. The subroutine entry point must be placed in
R$pc(a0). The register image is copied by the F$Alarm request into another buffer
area and may re-used immediately for other purposes.

The alarm ID returned may be used to delete an alarm request.

The time interval is the number of system clock ticks (or 256ths of a second) to wait
before the alarm subroutine is executed. If the high order bit is set, the low 31 bits are
interpreted as 256ths of a second. NOTE: All times are rounded up to the nearest clock
tick.

The system automatically deletes a process’s pending alarms when the process dies.

The alarm function code is used to select one of the related alarm functions. Not all
input parameters are always needed; each function is described in the following pages.

The following function codes are supported:

A$Delete Remove a pending alarm request
A$Set Execute a subroutine after a specified time interval
A$Cycle Execute a subroutine at specified time intervals
A$AtDate Execute a subroutine at a Gregorian date/time
A$AtJul Execute a subroutine at Julian date/time

System-state alarm subroutines must conform to the following conventions:

F$Alarm Set Alarm Clock

F$Alarm System-state System Calls

3 - 2 OS-9 System Calls

INPUT: d0-d7 = caller’s registers (R$d0-R$d7(a5))
(a0)-(a3) = caller’s registers (R$a0-R$a3(a5))
(a4) = system process descriptor pointer*
(a5) = ptr to register image
(a6) = system global storage pointer

OUTPUT: cc = carry set
d1.w = error code if error

* NOTE: The user number in the system process descriptor will have been temporarily
changed to the user number of original F$Alarm request. The registers d0-d7 and
(a0)-(a3) do not have to be preserved.

CAVEATS: System-state alarms are executed by the system process at priority 65535. They may
never perform any function that can result in any kind of queuing, such as F$Sleep,
F$Wait, F$Load, F$Event (Ev$Wait), F$IOQu, or F$Fork. When such functions
are required, the caller must provide a separate process to perform the function, rather
than an alarm.

WARNING: If an alarm execution routine suffers any kind of bus trap, address trap, or other
hardware-related error, the system will crash.

SEE ALSO: F$Alarm User-State System Call

POSSIBLE
ERRORS: E$UnkSvc, E$Param, E$MemFul, E$NoRAM, and E$BPAddr.

System-state System Calls F$Alarm: A$Delet, A$Set

OS-9 System Calls 3 - 3

F$Alarm FUNCTION CODES:

INPUT: d0.l = Alarm ID (or zero)
d1.w = A$Delete function code

OUTPUT: None

FUNCTION: A$Delete removes a cyclic alarm or any alarm that has not expired. If zero is passed
as the alarm ID, all pending alarm requests for the current process are removed.

INPUT: d0.l = Reserved, must be zero
d1.w = A$Set function code
d2.w = Reserved, must be zero
d3.l = Time Interval
(a0) = Register image

OUTPUT: d0.l = Alarm ID

ERROR cc = carry bit set to one
OUPTUT: 1.w = Error code

FUNCTION: A$Set executes a system-state subroutine after the specified time interval has elapsed.
The time interval may be specified in system clock ticks, or 256ths of a second. The
minimum time interval allowed is two system clock ticks.

A$Delete Remove a Pending Alarm Request

A$Set Execute a System-State Subroutine after a Specified Time Interval

F$Alarm: A$Cycle, A$AtDate System-state System Calls

3 - 4 OS-9 System Calls

INPUT: d0.l = reserved, must be zero
d1.w = A$Cycle function code
d2.l = signal code
d3.l = time interval

OUTPUT: d0.l = alarm ID

ERROR cc = carry bit set
OUTPUT: d1.w = appropriate error code

FUNCTION: The cycle function is similar to the set function, except that the alarm is reset after it is
sent. This causes periodic execution of a system-state subroutine.

CAVEAT: Keep cyclic system-state alarms as fast as possible and schedule them with as long a
cycle as possible to avoid consuming a large portion of available CPU time.

INPUT: d0.l = Reserved, must be zero
d1.w = A$AtDate function code
d2.l = Reserved, must be zero
d3.l = Time (00hhmmss)
d4.l = Date (YYYYMMDD)
(a0) = Register image

OUTPUT: d0.l = alarm ID

ERROR cc = carry bit set
OUTPUT: d1.w = appropriate error code

FUNCTION: A$AtDate executes a system-state subroutine at a specific date and time. NOTE:
A$AtDate only allows you to specify time to the nearest second. However, it does
adjust if the system’s date and time have changed (via F$STime). The alarm
subroutine executes anytime the system date/time becomes greater than or equal to the
alarm time.

A$Cycle Execute a System-State Subroutine Every N Ticks/Seconds

A$AtDate Execute a System-State Subroutine at Gregorian Date/Time

System-state System Calls F$Alarm: A$AtJul

OS-9 System Calls 3 - 5

INPUT: d0.l = Reserved, must be zero
d1.w = A$AtDate or A$AtJul function code
d2.l = Reserved, must be zero
d3.l = Time (seconds after midnight)
d4.l = Date (Julian day number)
(a0) = Register image

OUTPUT: d0.l = alarm ID

ERROR cc = carry bit set
OUTPUT: d1.w = appropriate error code

FUNCTION: A$AtJul executes a system-state subroutine at a specific Julian date and time. NOTE:
A$AtJul function only allows time to be specified to the nearest second. However, it
does adjust if the system’s date and time have changed (via F$STime). The alarm
subroutine is executed anytime the system date/time becomes greater than or equal to
the alarm time.

A$AtJul Execute a System-State Subroutine at Julian Date/Time

F$AllPD System-state System Calls

3 - 6 OS-9 System Calls

ASM CALL: OS9 F$AllPD

INPUT: (a0) = process/path table pointer

OUTPUT: d0.w = process/path number
(a1) = pointer to process/path descriptor

ERROR cc = Carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$AllPD allocates fixed-length blocks of system memory. It allocates and initializes
(to zeros) a block of storage and returns its address.

It can be used with F$FindPD and F$RetPD to perform simple memory management.
The system uses these routines to keep track of memory blocks used for process and
path descriptors. They can be used generally for similar purposes by creating a map
table for the data allocations. The table must be initialized as follows:

SEE ALSO: F$FindPD and F$RetPD.

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$AllPD Allocate Process/Path Descriptor

Block Number Offset

$00000000 = unallocated

(address of block two)

(address of block one)

Blocksize

Max block (N)

(N)

(2)

(1)

(0)

(a0)

4*N

8

4

2

0

.

.

.

.

.

.

System-state System Calls F$AllPrc

OS-9 System Calls 3 - 7

ASM CALL: OS9 F$AllPrc

INPUT: None

OUTPUT: (a2) = Process Descriptor pointer

ERROR cc = Carry bit set.
OUTPUT: d1.w = Appropriate error code.

FUNCTION: F$AllPrc allocates and initializes a process descriptor. The address of the descriptor is
kept in the process descriptor table. Initialization consists of clearing the descriptor,
setting up the state as system-state, and marking as unallocated as much of the MMU
image as the system allows.

On systems without memory management/protection, this is a direct call to F$AllPD.

SEE ALSO: F$AllPD

POSSIBLE
ERRORS: E$PrcFul

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST.

F$AllPrc Allocate Process Descriptor

F$AProc System-state System Calls

3 - 8 OS-9 System Calls

ASM CALL: OS9 F$AProc

INPUT: (a0) = Address of process descriptor

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$AProc inserts a process into the active process queue so that it may be scheduled for
execution. All processes already in the active process queue are aged. The age of the
specified process is set to its priority. The process is then inserted according to its
relative age. If the new process has a higher priority than the currently active process,
the active process gives up the remainder of its time-slice and the new process runs
immediately.

CAVEATS: OS-9 does not pre-empt a process that is in system state (that is, in the middle of a
system call). However, OS-9 does set a bit in the process descriptor that cause it to give
up its time slice when it re-enters user state.

SEE ALSO: F$NProc; Chapter 2 of the OS-9 Technical Overview, the section on Process
Scheduling

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$AProc Enter Process in Active Process Queue

System-state System Calls F$DelPrc

OS-9 System Calls 3 - 9

ASM CALL: OS9 F$DelPrc

INPUT: d0.w = process ID to de-allocate

OUTPUT: none

ERROR cc = carry set
OUTPUT: d1.w = appropriate error code

FUNCTION: F$DelPrc de-allocates a process descriptor previously allocated by F$AllPD. It is the
caller’s responsibility to ensure that any system resources used by the process are
returned prior to calling F$DelPrc.

Currently, the F$DelPrc request is simply a convenient interface to the F$RetPD
service request. It is preferred to F$RetPD to ensure compatibility with future releases
of the operating system that may need to perform process specific de-allocations.

SEE ALSO: F$AllPrc, F$AllPD, F$FindPD, and F$RetPD.

POSSIBLE
ERRORS: E$BNam and E$KwnMod.

NOTE: THIS IS A SYSTEM-STATE SERVICE REQUEST

F$DelPrc De-Allocate Process Descriptor Service Request

F$FindPD System-state System Calls

3 - 10 OS-9 System Calls

ASM CALL: OS9 F$FindPD

INPUT: d0.w = process/path number
(a0) = process/path table pointer

OUTPUT: (a1) = pointer to process/path descriptor

ERROR cc = Carry bit set
OUTPUT: d1.w = error code if error

FUNCTION: F$FindPD converts a process or path number to the absolute address of its descriptor
data structure. You can use it for simple memory management of fixed length blocks.
See F$AllPD for a description of the data structure used.

SEE ALSO: F$AllPd and F$RetPd.

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$FindPD Find Process/Path Descriptor

System-state System Calls F$IOQu

OS-9 System Calls 3 - 11

ASM CALL: OS9 F$IOQu

INPUT: d0.w = Process Number

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$IOQu links the calling process into the I/O queue of the specified process and
performs an untimed sleep. It is assumed that routines associated with the specified
process send a wakeup signal to the calling process. IOQu is used primarily and
extensively by the I/O system.

For example, if a process needs to do I/O on a particular device that is busy servicing
another request, the calling process performs an F$IOQu call to the process in control
of the device. When the first process returns from the file manager, the kernel
automatically wakes up the IOQu-ed process.

SEE ALSO: F$FindPd, F$Send, and F$Sleep.

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$IOQu Enter I/O Queue

F$IRQ System-state System Calls

3 - 12 OS-9 System Calls

ASM CALL: OS9 F$IRQ

INPUT: d0.b = vector number
 25-31 for autovectors
 57-63 for 68070 on-chip autovectors
 64-255 for vectored IRQs
d1.b = priority (0 = polled first, 255 = last)
(a0) = IRQ service routine entry point (0 = delete)
(a2) = device static storage
(a3) = port address

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$IRQ installs an IRQ service routine into the system polling table. If (a0) equals zero,
the call deletes the IRQ service routine, and only (d0/a0/a2) are used.

The port is sorted by priority onto a list of devices for the specified vector. If the
priority is zero, only this device is allowed to use the vector. Otherwise, any vector may
support multiple devices. OS-9 does not poll the I/O port prior to calling the interrupt
service routine and makes no use of (a3). Device drivers are required to determine if
their device caused the interrupt. Service routines conform to the following register
conventions:

INPUT: (a2) = global static pointer
(a3) = port address
(a6) = system global data pointer (D_’s)
(a7) = system stack (in active proc’s descriptor)

OUTPUT: None

ERROR Carry bit set if the device did not cause the
OUTPUT: interrupt.

WARNING: Interrupt service routines may destroy the following registers: d0,
d1, a0, a2, a3, and/or a6. You must preserve all other registers
used.

SEE ALSO: The OS-9 Technical I/O Manual contains more information on RBF and SCF device
drivers.

CAVEAT: You may not put zero priority multiple auto-vectored devices on the polling list.

F$IRQ Add or Remove Device from IRQ Table

System-state System Calls F$IRQ

OS-9 System Calls 3 - 13

POSSIBLE
ERRORS: E$POLL is returned if the polling table is full.

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$Move System-state System Calls

3 - 14 OS-9 System Calls

ASM CALL: OS9 F$Move

INPUT: d2.1 = Byte count to copy
(a0) = Source pointer
(a2) = Destination pointer

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$Move is a fast “block-move” subroutine capable of copying data bytes from one
address space to another (usually from system to user or vice versa).

The data movement subroutine is optimized to make use of long moves whenever
possible. If the source and destination buffers overlap, an appropriate move (left to
right or right to left) is used to avoid loss of data due to incorrect propagation.

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$Move Move Data (Low Bound First)

System-state System Calls F$NProc

OS-9 System Calls 3 - 15

ASM CALL: OS9 F$NProc

INPUT: None

OUTPUT: Control does not return to caller.

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$NProc takes the next process out of the Active Process Queue and initiates its
execution. If there is no process in the queue, OS-9 waits for an interrupt, and then
checks the active process queue again.

CAVEATS: The process calling NProc should already be in one of the system’s process queues. If
it is not, the calling process becomes unknown to the system even though the process
descriptor still exists and is printed out by a procs command.

SEE ALSO: F$AProc

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$NProc Start Next Process

F$Panic System-state System Calls

3 - 16 OS-9 System Calls

ASM CALL: OS9 F$Panic

INPUT: d0.l = panic code

OUTPUT: None. F$Panic generally does not return.

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: The OS-9 kernel makes a F$Panic request when it detects a disastrous, but not
necessarily fatal, system condition. Ordinarily, F$Panic is undefined and the system
dies.

The system administrator may install a service routine for F$Panic as part of an
OS9P2 startup module. The function of such a routine might be to fork a warmstart
Sysgo process or to cause the system to re-boot.

Two panic codes are defined:

K$Idle The system has no processes to execute.
K$PFail Power failure has been detected.

F$Panic is called only when the kernel believes there are no processes remaining to be
executed. Although it is likely the system is dead at this point, it may not be. Interrupt
service routines or system-state alarms could cause the system to become active.

NOTE: The OS-9 kernel does not detect power failure. However, some machines are
equipped with hardware capable of detecting power failure. For these machines, an
OS9P2 routine could be installed to call F$Panic when power failure occurs.

SEE ALSO: F$SSvc; Chapter 2 of the OS-9 Technical Overview, the section on installing
system-state routines.

F$Panic System Catastrophic Occurrence

System-state System Calls F$RetPD

OS-9 System Calls 3 - 17

ASM CALL: OS9 F$RetPD

INPUT: d0.w = process/path number
(a0) = process/path table pointer

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$RetPD de-allocates a process or path descriptor. It can be used in conjunction with
F$AllPD and F$FindPD to perform simple memory management of other fixed length
objects.

SEE ALSO: F$AllPD and F$FindPD.

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$RetPD Return Process/Path Descriptor

F$SSvc System-state System Calls

3 - 18 OS-9 System Calls

ASM CALL: OS9 F$SSvc

INPUT: (a1) = pointer to service request initialization table
(a3) = user defined

OUTPUT: None

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$SSvc adds or replaces function requests in OS-9’s user and privileged system
service request tables.

(a3) is intended to point to global static storage. This allows a global data pointer to be
associated with each installed system call. Whenever the system call is invoked, the
data pointer is automatically passed. Whatever (a3) points to is passed to the system
call; (a3) may point to anything.

An example initialization table might look like this:

SvcTbl
 dc.w F$Service OS-9 service request code
 dc.w Routine-*-2 offset of routine to process request
 :
 dc.w F$Service+SysTrap redefine system level request
 dc.w SysRoutn-*-4 offset of routine to handle system request
 :
 dc.w -1 end of table

Valid service request codes range from (0-255).

If the sign bit of the function code word is set, only the system table is updated.
Otherwise, both the system and user tables are updated.

You can only call privileged system service requests from routines executing in System
(supervisor) state. The example above shows how a service call that must behave
differently in system state than it does in user state is installed.

F$SSvc Service Request Table Initialization

System-state System Calls F$SSvc

OS-9 System Calls 3 - 19

System service routines are executed in supervisor state, and are not subject to time-
sliced task-switching. They are written to conform to register conventions shown in the
following table:

INPUT: d0-d4 = user’s values
(a0)-(a2) = user’s values
(a4) = current process descriptor pointer
(a5) = user’s registers image pointer
(a6) = system global data pointer

OUTPUT: cc = carry set
d1.w = error code if error

The service request routine should process its request and return from subroutine with
a RTS instruction. Any of the registers d0-d7 and (a0)-(a6) may be destroyed by the
routine, although for convenience, (a4)-(a6) are generally left intact.

The user’s register stack frame pointed to by (a5) is defined in the library sys.l and
follows the natural hardware stacking order. If the carry bit is returned set, the service
dispatcher sets R$cc and R$d1.w in the user’s register stack. Any other values to be
returned to the user must be changed in their stack by the service routine.

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$VModul System-state System Calls

3 - 20 OS-9 System Calls

ASM CALL: OS9 F$VModul

INPUT: d0.l = beginning of module group (ID)
d1.l = module size
(a0) = module pointer

OUTPUT: (a2) = Directory entry pointer

ERROR cc = Carry bit set
OUTPUT: d1.w = Appropriate error code

FUNCTION: F$VModul checks the module header parity and CRC bytes of an OS-9 module.

If the header values are valid, the module is entered into the module directory, and a
pointer to the directory entry is returned.

The module directory is first searched for another module with the same name. If a
module with the same name and type exists, the one with the highest revision level is
retained in the module directory. Ties are broken in favor of the established module.

SEE ALSO: F$CRC and F$Load.

POSSIBLE
ERRORS: E$KwnMod, E$DirFul, E$BMID, E$BMCRC, and E$BMHP.

NOTE: THIS IS A PRIVILEGED SYSTEM-STATE SERVICE REQUEST

F$VModul Validate Module

End of Chapter 3

