0S-9
TECHNICAL /O
MANUAL

ACKNOWLEDGEMENTS

Many thanks to Warren Brown, Larry Crane, and Peter Dibble for their wisdom, patience, and perseverance.

COPYRIGHT AND REVISION HISTORY

Copyright © 1990 Microware Systems Corporation. All Rights Reserved. Reproduction of this document, in part or
whole, by any means, electrical, mechanical, magnetic, optical, chemical, manual or otherwise is prohibited, without
written permission from Microware Systems Corporation.

This manual reflects Version 2.4 of the OS-9 Operating System.

Publication Editor: Walden Miller, Kathleen Flood, Debbie Baier

Revision: C

Publication date: October 1990

Product Number: 0i068na68mo
DISCLAIMER

The information contained herein is believed to be accurate as of the date of publication, however, Microware will not
be liable for any damages, including indirect or consequential, from use of the OS-9 operating system, Microware-

provided software or reliance on the accuracy of this documentation. The information contained herein is subject to
change without notice.

REPRODUCTION NOTICE

The software described in this document is intended to be used on a single computer system. Microware expressly
prohibits any reproduction of the software on tape, disk or any other medium except for backup purposes. Distribution
of this software, in part or whole, to any other party or on any other system may constitute copyright infringements
and misappropriation of trade secrets and confidential processes which are the property of Microware and/or other
parties. Unauthorized distribution of software may cause damages far in excess of the value of the copies involved.

For additional copies of this software and/or documentation, or if you have questions concerning the above notice, the
documentation, and/or software, please contact your OS-9 supplier.

TRADEMARKS

0S-9 is a trademark of Microware Systems Corporation.

Microware Systems Corporation « 1900 N.W. 114th Street
Des Moines, lowa 50325-7077 « Phone: 515/224-1929

0S-9 Technical I/O Manual

Table of Contents Table of Contents

Table of

Contents
INEFOTUCTION Lot vii
The OS-9 Input/Output System
The OS-9 Unified INPUY/OULPUL SYSTEIMoviiiiiiiiiiiieece e e 1-1
The KErNEL and 17O ..ottt b bbbt 1-4
Kernel 1/0 SErvICe REQUESES......ccuiiieiiiiesieeie ettt 1-5
Device DeSCrPtOr IMOUUIEScviiiiiieiece ettt et eeaesra e neeneesneenrens 1-7
oL O D T= T Tox] o] (o] RO 1-13
LR\ =T o =T S 1-16
File Manager Organizationcccooeriiieieeie e s sne s 1-17
File Manager 1/0 Service REQUESESccvviierieeieieeie et see e ee e anee e 1-18
DeVice DIiVEr MOUUIES.ooeiieiee ettt 1-21
Driver MOAUIE FOIMAL.......ccviiiiiiiieiee et 1-21
Device Drivers that Control Multiple DEVICESccoveiiiiiiieiice e e s 1-27
SIMPIE DEVICES ...ttt te e e s e s taeaesneesteentesneessaeneennens 1-27
IMUIEI-POIT DBVICES.....ccueiiieieee sttt sttt ettt neenns 1-28
IMUITI-ClaSS DBVICES......uiivieiieiieieiieie ettt bbbttt sbe bbb eneas 1-31
Examples of Multi-Class Devices Using SCSI System Conceptcccoeevervrierieennnn 1-31
INEEITUPE DIIVEN 1O ..ttt neeste e e reebeenaenneenreas 1-37
DMA 1/0 and SYStEM CACNES.........oiieiiiieiieiie ittt sre s 1-39
SYSCACNE IMOUUIE ...t te e reenteeneenneas 1-39
INIEIMIOAUIE ..ottt sre e 1-39
Avoiding Stale Data Problems............cooeiiiiiic e 1-40
Address Translation and DMA TranSTerS.......cooi oo 1-42

0S-9 Technical I/O Manual iii

Table of Contents Table of Contents

iv 0S-9 Technical I/O Manual

Table of Contents Table of Contents

Random Block File Manager (RBF)

RBF General DESCIIPTION.oiiiiiiieitieie ettt sttt sbe e e sbeenne e 2-1
RBF 1/0 SEIVICE REQUESESeevieiiiiiciieeieeie ettt ste et e e sneenae e e nneenees 2-2

RBF Device DeSCriptor MOUUIES...........couiiiiie et 2-7
RBF Path Descriptor DefinitioNScoovoiiiiieie s ene 2-16
RBEF DEVICE DIIVEIS.....c.uiiiiiitieieeiie sttt sttt sttt bt et s et e et se e nbe e s tesbe e beenbesbeenbeeneenrs 2-19
A QI T AT g I8 1SR 2-21

RBF Device Driver Storage DefinitionS..........coooiieiiiiniiiie e 2-22
DEVICE DIIVEN TADIES ...t 2-24
LINKING RBEF DIIVEIS ...ttt sttt st et nne s 2-28

RBF DeVice Driver SUDIOULINEScceiieieriiriiniisiieieeieie et 2-30

N SRS 2-31

READ ... ot bbb et 2-33

WRITE .. ettt a ettt s e et e e e et e s 2-37
GETSTAT/SETSTAT ottt 2-40

TERM ..ottt et 2-46

IRQ SEIVICE ROULINEccciviiiie ettt re e 2-47

Sequential Character File Manager (SCF)

SCF GENEral DESCIIPLIONvveiieeieiiieite e e te et te e e te e e st e sae e este e teeseesnaesaeaneesreeneeneas 3-1
SCF LN EAITING .ottt sttt sne e 3-2

SCF 1/O SEIVICE REOUESTS.....c.veiiieiiiieeie et esiestee e eie e e e e e ste e ssaesaeeneesraenneeneenneenes 3-3

SCF Device DesCriptor MOUUIESccuiiiiiiiiieecie e 3-6
SCF Path DesCriptor DefiNITIONScceiieiieiieiieie e sae e nreas 3-11
SCF DBVICE DIIVEIS ...ttt sttt bbbt et e et e ese e nbe et e sbeesbeenbesneenneas 3-13
Special Characters antd NULLS.........c.oiiviiiiieiecie e 3-14

o A S (4] o] o1 Lo TSRS 3-14

Data FIOW CONIOLoviieiiiiic bbb 3-15

SCF Device Driver Storage Definitionsccoociiieiiniiiienisie e 3-17
LINKING SCF DIIVEIS.....viiiieiiieie ettt see et e e ae e staete e e staeseesneesseeaeaneenneenes 3-20

SCF DeVice Driver SUDIOULINESoiieieiieiieeiesiie et eneas 3-22

I T bbb 3-23

READ ... oottt bt r et aene s 3-24

WRITE bbb bbbt nb bt 3-26
GETSTAT/SETSTAT oottt 3-28

TERM L. 3-32

IRQ SErVICE ROULINEocuiiiiie ettt 3-33

0S-9 Technical I/O Manual Y,

Table of Contents Table of Contents

Sequential Block File Manager (SBF)

SBF GENEIal DESCIIPLIONviiiiiieiiieite ettt sttt bbbt et e esbeenbeene e b e et e 4-1
UNDUTFEIEA 17Ot 4-2
BUFFEIEA 1O ..t sttt ae s 4-2
Considerations When WIIting 10 TaPeS......cccveueiieiierieieesieeieeseesiesee e see e sseessesneesnens 4-2
ENC-0F-TaPE PrOCESSINGiiueiitieiiiieie sttt sttt sbe e eneas 4-3
SBF /O SEIVICE REGUESTS.......veiveeiiiieeieetiestiesie st e et see e ae e ste e e steesaesraenneeneenneenes 4-3

SBF Device DesSCriptor MOUUIEScuiiiiiiiieiecie e 4-6

SBF Path DescCriptor DefiNITIONSccoiviieiieiecie et 4-9

SBEF DEVICE DIIVEIS ...ttt sttt bbbt et sne e b e e b sneenbeenbesneenbeas 4-10
Sensing the ENG-0F-TaPEccviieiiiieie e re e nne s 4-10
Tape POSITIONING OPEIALIONS........coiieiiiieiiiesieeie sttt sae e nees 4-12
TAPE SIFEAMING ...e.veeieeiiecte e ee et e e et e et e e e e se e s te e e e sreebeeneesreeeeeneenreenees 4-13
SBF Device Driver Storage Definitionsccociiiiiiniiiienene e 4-14
DEVICE DIIVEN TADIES ...t 4-16
LINKING SBF DIIVEIS.... ..ottt sttt sttt sne s 4-18
SBF DeVvice Driver SUDIOULINESccoiveiiiiiiiiiiiiseseeee e 4-20

N SRS 4-21
READ ... oottt bbbttt a e 4-23
WWRITE ..ottt bbbt e s e ne et et e e b e e 4-24
GETSTAT/SETSTAT ottt e 4-26
TERM ..ottt et 4-30
IRQ SEIVICE ROULINEcociiiiiiecie ettt ree e 4-31

End of Table of Contents

Vi 0S-9 Technical I/O Manual

Table of Contents Notes

NOTES

0S-9 Technical I/O Manual vii

Notes

Introduction

Introduction

You can use the OS-9 Technical I/0 Manual as a supplement to the OS-9 Technical Manual, which
descibes in detail how the 1/O system operates. The OS-9 Technical I/O Manual provides further
information to help you create new file managers and device drivers, and supplies examples which you
can adapt to your specific system needs. A basic understanding of the OS-9 Technical Manual is

assumed.

This manual contains the following chapters:

Chapter 1 - The OS-9 Input/Output System
Explains the relationships between the kernel, device descriptors, path descriptors, and file
managers, and how each of these components operates within OS-9.

Chapter 2 - Random Block File Manager (RBF)
Explains how to use the RBF manager to process 1/0 service requests to random access
devices, and the parameters that drive it.

Chapter 3 - Sequential Character File Manager (SCF)

Explains how to use the SCF manager to process 1/O service requests to devices which
operate on a character by character basis, and the 1/O editing functions available for line-
oriented operations.

Chapter 4 - Sequential Block File Manager (SBF)
Explains how to use the SBF manager to process 1/0 service requests to sequential block-
oriented mass storage devices

viii

0S-9 Technical I/O Manual

Introduction Notes

In addition, chapters 2, 3, and 4 each contain a description of how device driver routines for the respective
class should operate. These descriptions are based on existing Microware drivers.

If this manual accompanies a media package that contains driver source code (for example, Port Pak,
Driver Pak), we recommend that you study the source code in conjunction with this manual.

0S-9 Technical I/O Manual ix

The 0S-9
Input/Output
System

The OS-9 Unified Input/Output System

OS-9 features a versatile, unified, hardware-independent 1/0 system. The 1/O system is modular; you can
easily expand or customize it. The OS-9 1/O system consists of the following software components:

e The kernel.

» File managers.

* Device drivers.

» The device descriptor.
The kernel, file managers, and device drivers process 1/O service requests at different levels. The device
descriptor contains information used to assemble the elements of a particlular 1/0 subsystem. The file
manager, device driver, and device descriptor modules are standard memory modules. You can install or
remove any of these modules while the system is running.
The kernel supervises the overall OS-9 1/0O system. The kernel:

» Maintains the 1/0 modules by managing various data structures. It ensures that the appropriate
file manager and device driver modules process each 1/O request.

» Establishes paths. These are the connections between the kernel, the application, the file
manager, and the device driver.

File managers perform the processing for a particular class of devices, such as disks or terminals. They
deal with “logical” operations on the class of devices. For example, the Random Block File manager
(RBF) maintains directory structures on disks; the Sequential Character File manager (SCF) edits the data
stream it receives from terminals. File managers deal with the 1/0 requests on a generic “class” basis

0S-9 Technical I/O Manual 1-1

The OS-9 Unified Input/Output System The OS-9 Input/Output System

Device drivers operate on a class of hardware. Operating on the actual hardware device, they send data to
and from the device on behalf of the file manager. They isolate the file manager from hardware
dependencies such as control register organization and data transfer modes, translating the file manager’s
logical requests into specific hardware operations.

The device descriptor contains the information required to assemble the various components of an 1/0O sub-
system (that is, a device). It contains the names of the file manager and device driver associated with the
device, as well as the device’s operating parameters. Parameters in device descriptors can be fixed, such
as interrupt level and port address, or variable, such as terminal editing settings and disk physical param-
eters. The variable parameters in device descriptors provide the initial default values when a path is
opened, but applications can change these values. The device descriptor name is the name of a device as
known by the user. For example, the device /dO is described by the device descriptor dO.

1-2 0S-9 Technical I/O Manual

The OS-9 Input/Output System

The OS-9 Unified Input/Output System

0S-9 Technical I/O Manual

1-3

The OS-9 Unified Input/Output System The OS-9 Input/Output System

(ernel Level

‘ile
lanager
evel

Jevice
river
.evel

evice
escriptor
evel

User Level + User Applications
and Utilities

+ OS-9 KERNEL

RBF SCF SBF PIPEMAN
+ Disk Char Tape Pipe
File File File File
Manager Manager Manager Manager

Floppy Hard Serial/ ACRTC Tape
+ Disk Disk Parallel Graphics DriF\)/er
Driver Driver Driver Driver

MTOIMTlI Pipe IPipe I

Figure 1-1: OS-9 I/O System Module Organization

1-4

0S-9 Technical I/O Manual

The OS-9 Input/Output System The Kernel and 1/0

The Kernel and I/O

The kernel maintains the 1/0 system for OS-9. It provides the first level of 1/O service by routing system
call requests between processes and the appropriate file managers and device drivers. The kernel also
allocates and initializes static storage for device drivers.

The kernel maintains two important internal data structures: the device table and the path table. The device
table is a list of all devices currently attached (loaded and initialized). The path table is a list of all 1/0
paths currently open. These tables reflect two other structures respectively: the device descriptor and the
path descriptor.

Whenever a path is opened (I3Open), the kernel’s attach routine (I$Attach) is called, and it links to the
device descriptor of the specified (or implied) device name in the pathlist. The device descriptor contains
the port address of the device, the file manager’s name, and the device driver’s name. The attach routine
then links to the specified file manager and device driver. After these components are located, the
I$Attach routine inspects the current device table entries, and compares the new device specification with
the current entries in the device table.

The I$Attach routine proceeds as follows:

If the device port address, file manager, device driver, and device descriptor match an existing
entry in the device table, the device is known to the system. The use count for that device table
entry is incremented and the kernel returns to the caller.

| If the device port address, file manager, and device driver match an existing device table entry,
but the device descriptor does not, this is a new, or synonymous device on the port. A new
device table entry is created, its use count is set to one, and the kernel returns to the caller.

/ If neither of the above situations occur (no match on port address, file manager, and device
driver) or this is the first time the path is opened, then the device is unknown to the system. In
this case, the kernel allocates static storage for the driver and calls the driver’s INIT routine. If
INIT does not return an error, then a new device table entry is created, its use count is set to
one, and the kernel returns to the caller. If INIT returns an error, the kernel calls the device
driver’s TERM routine before performing any necessary clean-up and returning the original
error.

0S-9 Technical I/O Manual 1-5

Kernel I/O Service Requests The OS-9 Input/Output System

Whenever a path is closed, its use count is decremented. If the use count becomes zero, the kernel attempts
to detach the device (I$Detach) associated with the path from the 1/0 system. The use count in the
device’s device table entry is decremented. If the use count becomes zero, the following actions take
place:

The device table is searched to determine if another device table entry is using the same static
storage as the device being deleted.

| If no other device is using the static storage, the driver’s TERM routine is called to de-initialize
the device. The driver’s static storage is then returned to the system.

/A The device’s entry is removed from the device table.
The file manager, device driver, and device descriptor are then unlinked.

Path descriptors maintain the status of 1/0 operations to devices and files. The kernel maintains pointers
to these path descriptors in the path table. Each time a path is created (I$Open, I$Create), a new path
descriptor is created and an entry is added to the path table. If I$SDup is used to open a path, only the use
count of an existing path descriptor is incremented. When a path is closed and its use count becomes zero,
the path descriptor is de-allocated, and the appropriate entry is deleted from the path table.

Kernel I/O Service Requests

File managers are not called for I$Attach, 1$Detach, and I$Dup. The kernel performs the necessary
system functions for these requests.
I$Attach The kernel performs the following functions:

* Links to component modules (file manager, device driver, device
descriptor)

» Determines if adevice table entry matches an existing entry for the
device
If the device port address, file manager, device driver, and device descriptor
match, the kernel:

* |Increments the use count for the device.

* Returns to the caller.

1-6 0S-9 Technical I/O Manual

The OS-9 Input/Output System Kernel I/O Service Requests

If the device port address, file manager, and device driver match an existing
device table entry, but the device descriptor does not, this is a new (or
synonymous) device on the port. I$Attach:

» Creates a new device table entry.
» Sets the use count to one.
* The kernel returns to the caller.
If there is no match on port address, file manager, and device driver, the kernel:
» Allocates and clears the driver’s static storage

* Sets V_PORT to the hardware address given in the descrip-
tor

e« Calls thedriver’s INIT routine to initialize the hardware
If INIT returns an error, the kernel calls the driver’s TERM routine, de-
allocates any resources, and returns the error.

e Adds the device to the device table
I$Detach The kernel decrements the use count for the device. If the use count becomes zero, the
kernel searches the device table for other devices using the same static storage. If any

are found, the original device table entry is removed from the table. Otherwise, the ker-
nel performs the following actions:

 Calls thedriver’'s TERM routine

* Returns the driver’'s static storage to the system’s free memory
pool

* Removes the device entry from the device table
The kernel then unlinks the file manager, device driver, and device descriptor.

I$Dup The kernel increments the use count (PD_COUNT, PD_CNT) of the path.

0S-9 Technical I/O Manual 1-7

Device Descriptor Modules The OS-9 Input/Output System

Device Descriptor Modules

Device descriptor modules are small, non-executable modules that contain information to associate a spe-
cific 1/0 device with its logical name, hardware controller address(es), device driver name, file manager
name, and initialization parameters.

File managers operate on a class of logical devices. Device drivers operate on a class of physical devices.
A device descriptor module tailors a device driver or file manager to a specific I/O port. At least one
device descriptor module must exist for each 1/0 device in the system. An 1/O device may have several
device descriptors with different initialization parameters and names. For example, a serial/parallel driver
could have two device descriptors, one for terminal operation (/T1) and one for printer operation (/P1).

If a suitable device driver exists, adding devices to the system consists of adding the new hardware and
another device descriptor. Device descriptors can be in ROM, in the boot file, or loaded into RAM while
the system is running.

1-8 0S-9 Technical I/O Manual

The OS-9 Input/Output System Device Descriptor Modules

The module name is used as the logical device name by the system and user (it is the device name given
in pathlists). A device descriptor module header consists of the standard module header fields with a type
code of device descriptor (DEVIC). The standard device descriptor header is followed by a device-type
specific initialization table (see Figure 1-2).

Module End +
Module CRC

Name Strings,
DevCon, etc.

Device-specific
Initialization Table

Standard Device
Descriptor Header

Standard Module
Header

Device Descriptor
Header

Universal Module
Header

Module Beginning +

Figure 1-2: Device Descriptor Layout

0S-9 Technical I/O Manual 1-9

Device Descriptor Modules The OS-9 Input/Output System

The standard device descriptor fields are listed below and described in the following pages. Refer to the
appropriate chapter of this manual for the specific device-type for the device descriptor initialization table
fields.

Offset Name Description

$30 M$Port Port Address

$34 M$Vector Interrupt Vector Number
$35 MS$IRQLVI Interrupt Level

$36 M$Prior Interrupt Polling Priority
$37 M$Mode Device Mode Capabilities
$38 M$FMgr File Manager Name Offset
$3A M$PDev Device Driver Name Offset
$3C M$DevCon Device Configuration Offset
$3E Reserved

$46 M$Opt Initialization Table Size
$48 M$DTyp Device Type (first field of initialization table)

NOTE: Offset refers to the location of a module field, relative to the starting address of the module.
Module offsets are resolved in assembly code by using the names shown here and linking with the
relocatable library: sys.| or usr.l.

Name Description

M$Port Port address
M$Port usually contains the absolute physical address of the hardware controller.
However, it can be another address (for example, RO/R1). Before the kernel attaches
a device (calls its INIT routine), this value is copied into the V_PORT field of the
driver’s static storage.

M$Vector Interrupt Vector Number
The interrupt vector associated with the port, used to initialize hardware and for
installation on the IRQ poll table:

25-31 for an auto-vectored interrupt. Levels1-7.
57-63 for 68070 on-chip auto-vectored interrupts. Levels 1 - 7.
64-255 for a vectored interrupt.

1-10 0S-9 Technical I/O Manual

The OS-9 Input/Output System Device Descriptor Modules

Name Description
MSIRQLVI Interrupt Level
The device’s physical interrupt level. It is not used by the kernel or file manager. The
device driver may use it to mask off interrupts for the device when critical hardware
manipulation occurs.
NOTE: Level 7 is a non-maskable interrupt. It should not be used by OS-9 I/0
devices. A device set at this level can interrupt the kernel during critical system
operations. Level 7 may be used, however, for hardware operations unknown to the
system (for example, dynamic RAM refreshing).
M$Prior Interrupt Polling Priority
Indicates the priority of the device on its vector. Smaller numbers are polled first if
more than one device is on the same vector. A priority of zero indicates the device
requires exclusive use of the vector.
M$Mode Device Mode Capabilities
This byte is used to validate a caller’s access mode byte in I$Create or I$Open calls.
It may be any combination of the following:
bit 0: Set if read access
bit 1: Set if write access
bit 2: Set if executable access
bit 6: Set if single-user access (non-sharable)
bit 7: Set if directory file access
All other bits are reserved.
M$FMgr File Manager Name offset
The offset to the name string of the file manager module for this device.
M$PDev Device Driver Name offset

The offset to the name string of the device driver module for this device.

0S-9 Technical I/O Manual 1-11

Device Descriptor Modules The OS-9 Input/Output System

Name

Description

M$DevCon

M$Opt

M$DTyp

Device Configuration

This is the offset to an optional device configuration table. You can use it to specify
parameters or flags that the device driver needs and are not part of the normal
initialization table values. This table is located after the standard initialization table.
The kernel or file manager never references it. As the pointer to the device descriptor
is passed in INIT and TERM, M$DevCon is generally available to the driver only
during the driver’s INIT and TERM routines. Other routines in the driver (for example,
Read) must first search the device table to locate the device descriptor before they can
access this field.

Typically, this table is used for name string pointers, OEM global allocation pointers,
or device-specific constants/flags. NOTE: These values, unlike the standard options,
are not copied into the path descriptors options section.

Table Size
This contains the size of the device’s standard initialization table. Each file manager
defines a ceiling on M$Opt.

Device Type (First Field of Initialization Table)

The device’s standard initialization table is defined by the file manager associated with
the device, with the exception of the first byte (M$DTyp). The first byte indicates the
class of the device (RBF, SCF, etc.).

Name Value Description
DT_SCF

o

Sequential Character File Manager (SCF)

DT_RBF 1 Random Block File Manager (RBF)
DT_Pipe 2 PIPE File Manager (PIPEMAN)

DT_SBF 3 Sequential Block File Manager (SBF)
DT_NFM 4 Network File Manager (NFM)

DT _CDFM 5 Compact Disc File Manager (CDFM)
DT_UCM 6 User Communications Manager (UCM)

DT _SOCK 7 Socket Communications Manager (SOCKMAN)
DT_PTTY 8 Pseudo-keyboard Manager (PKMAN)
DT_INET 9 Internet Interface Manager (IFMAN)
DT_NRF 10 Non-volatile RAM File Manager (NVRAM)
DT_GFM 11 Graphics File Manager (GFM)

1-12

0S-9 Technical I/O Manual

The OS-9 Input/Output System Device Descriptor Modules

The initialization table (M$DTyp through M$DTyp + M$Opt) is copied into the option
section of the path descriptor when a path to the device is opened. Typically, this table
is used for the default initialization parameters such as the delete and backspace char-
acters for a terminal. Applications may examine all of the values in this table using
$GetStt (SS_Opt). Some of the values may be changed using I$SetStt; some are
protected by the file manager to prevent inappropriate changes.

The theoretical maximum initialization table size is 128 bytes. However, a file manager
may restrict this to a smaller value.

0S-9 Technical I/O Manual 1-13

Path Descriptors The OS-9 Input/Output System

Path Descriptors

Every open path is represented by a data structure called a path descriptor. It contains path-related
information required by file managers and device drivers. Path descriptors are dynamically allocated and
de-allocated as paths are opened and closed.

A path descriptor is 256 bytes long. It has three sections:
* The first 42 bytes are defined universally for all file managers and device drivers.

* The next 86 bytes are reserved for and defined by each type of file manager for file pointers,
permanent variables, etc.

» The last 128 bytes constitute the option area used for the path’s operating parameters. This area
can be inspected or changed by the user. The variables are initialized at the time the path is
opened by copying the initialization table contained in the device descriptor module. The file
manager may also initialize certain variables at the end of the initialization table section so that
they may be inspected. The values in this table may be examined using I$GetStt or changed
using 1$SetStt by applications using the SS_Opt code. The file manager protects some values
to prevent inappropriate changes.

The universal path descriptor fields are described below. Each file manager chapter contains definitions
of the option area specific to that manager.

Offset Name Maintained By Description

$00 PD _PD Kernel Path Number

$02 PD_MOD Kernel Access Mode (R W E S D)

$03 PD_CNT Kernel Number of Paths using this PD (obsolete)

$04 PD_DEV Kernel Address of Related Device Table Entry

$08 PD_CPR Kernel Requester’s Process 1D

$0A PD_RGS Kernel Address of Caller’s MPU Register Stack

$OE PD_BUF File Manager Address of Data Buffer

$12 PD_USER Kernel Group/User ID of Original Path Owner

$16 PD_PATHS Kernel List of Open Paths on Device

$1A PD_COUNT Kernel Number of Paths using this PD

$1C PD_LProc Kernel Last Active Process ID

$20 PD_ErrNo File Manager Global “errno” for C language file managers

$24 PD_SysGlob File Manager System global pointer for C language file
managers

$2A PD_FST File Manager File Manager Working Storage

$80 PD _OPT Driver/File Man. Option Table

1-14 0S-9 Technical I/O Manual

The OS-9 Input/Output System Path Descriptors

Name

Description

PD_PD

PD_MOD

PD_CNT

PD_DEV

PD_CPR

PD_RGS

PD_BUF

PD_USER

PD_PATHS

Path Number
The path number assigned by the kernel to the open path associated with this descriptor.

Access Mode (RW E S D)
The file access mode specified by the 1/0 request. It may be any combination of the
following:

bit 0: Set if read access.

bit 1: Set if write access.

bit 2: Set if executable access.

bit 6: Set if single-user access (non-sharable).

bit 7: Set if directory file access.

All other bits are reserved.
Number of Paths using this PD (obsolete)

Address of Related Device Table Entry
The address of the device table entry associated with this path.

Requester’s Process ID
The process ID of the process originating the 1/0 request.

Address of Caller’'s MPU Register Stack
The address of the originating process’s MPU register stack. This pointer can be used
to read or write the registers of the calling process.

Address of Data Buffer
This is the address of the data buffer associated with the current 1/0O operation. It may
be a buffer created by the file manager or a pointer directly to an application’s buffer.

Group/User ID of Original Path Owner
The group/user 1D of the process which created this path.

List of Open Paths on Device
This field is used to link this descriptor into a circular, singly-linked list of paths open
to this device.

0S-9 Technical I/O Manual 1-15

Path Descriptors

The OS-9 Input/Output System

Name Description
PD_COUNT Number of Paths using this PD

The number of open paths using this path descriptor. This is set to one when the first

path is opened. Using I$Dup to open paths increments this counter.
PD_LProc Last Active Process ID

The process ID of the most recent process to perform 1/0 on this path.
PD_ErrNo Global “errno” for C language file managers

This field is available for C language file managers to implement as they see fit.
PD_SysGlob System global pointer for C language file managers

This field is available for C language file managers to implement as they see fit.
PD_FST File Manager Working Storage

Reserved for and defined by the file manager.
PD_OPT Option Table

A 128-byte option area used for the path’s operating parameters that you can inspect or
change. These variables are initialized at the time the path is opened by copying the
initialization table contained in the device descriptor module. The file manager may
also initialize certain variables at the end of the initialization table so that they may be
inspected. The values in this table may be examined using I$GetStt or changed using
I$SetStt by applications using the SS_Opt code. The file manager protects some
values to prevent inappropriate changes.

1-16

0S-9 Technical I/O Manual

The OS-9 Input/Output System File Managers

File Managers

The function of a file manager is to process the raw data stream to or from device drivers for a class of
similar devices. File managers make device drivers conform to the OS-9 standard 1/O and file structure
by removing as many unique device operational characteristics as possible from 1/O operations. File
managers are also responsible for mass storage allocation and directory processing, if applicable to the
class of devices they service.

File managers usually buffer the data stream and issue requests to the kernel for dynamic allocation of
buffer memory. They may also monitor and process the data stream. For example, they may add line-feed
characters after carriage returns.

File managers are re-entrant. One file manager may be used for an entire class of devices with similar
operational characteristics. OS-9 systems can have any number of file manager modules.

NOTE: 1/0 system modules must have the following module attributes:

* They must be owned by a super-user (0.n).

* They must have the system-state bit set in the attribute byte of the module header. (OS-9 does
not currently make use of this, but future revisions will require that 1/0 system modules be
system-state modules.)

Four file managers are usually included in an OS-9 system:

RBF (Random Block File Manager)
Operates random-access, block-structured devices such as disk systems.

SCF (Sequential Character File Manager)
Used with single-character-oriented devices such as CRT or hard-copy terminals, printers, and mo-
dems.

SBF (Sequential Block File Manager)
Used with sequential block-structured devices such as tape systems.

PIPEMAN (Pipe File Manager)
Supports interprocess communication through memory buffers called pipes.

0S-9 Technical I/O Manual 1-17

File Manager Organization The OS-9 Input/Output System

File Manager Organization

A file manager is a collection of major subroutines accessed through an offset table. The table contains
the starting address of each subroutine relative to the beginning of the table. The location of the table is
specified by the execution entry point offset in the module header. A sample listing of the beginning of a
file manager module is shown below.

* Sample File Manager

* Module Header declaration
Type_Lang equ (FIMgr<<8)+Objct
Attr_Revs equ ((ReEnt+Supstat)<<8)+0

psect FileMgr,Type_Lang,Attr_Revs,Edition,0,Entry_pt

* Entry Offset Table

Entry ptdc.w Create-Entry_pt
dc.w Open-Entry_pt
de.w MakDir-Entry_pt
de.w ChgDir-Entry_pt
dc.w Delete-Entry pt
de.w Seek-Entry_pt
de.w Read-Entry_pt
de.w Write-Entry pt
de.w ReadLn-Entry pt
de.w WriteLn-Entry pt
de.w GetStat-Entry_pt
de.w SetStat-Entry_pt
de.w Close-Entry_pt

* Individual Routines Start Here

When the kernal calls the individual file manager routines, standard parameters are passed in the following
registers:

(al) Pointer to Path Descriptor.

(a4) Pointer to current Process Descriptor.

(a5) Pointer to User’s Register Stack; user registers pass/receive parameters
as shown in the system call description section.

(a6) Pointer to system Global Data area.

These routines are called in system state.

1-18 0S-9 Technical I/O Manual

The OS-9 Input/Output System File Manager I/O Service Requests

File Manager I/0O Service Requests

The general /O responsibilities for file managers are described in the following pages. Each file manager
chapter contains a description of the specific I/O functions for that manager.

Name

Description

I$SChgDir

I$Close

I$Create

I$Delete

I$GetStt

I$MakDir

I$Open

On multi-file devices, I$ChgDir searches for a directory file. (The kernel allocates a
path descriptor so that I$ChgDir may use I$Open when searching for the directory.)
If the directory is located, the file manager saves its address in the caller’s process
descriptor at P$DIO. 1$Open and I1$Create begin searching in this directory when the
caller’s pathlist does not begin with a slash (/) character. File managers that do not
support directories return with the carry bit set and an appropriate error code in (d1.w).

I$Close ensures that any output to a device is completed (writing out the last buffer if
necessary), and releases any buffer space allocated when the path was opened. If
required, it may do specific end-of-file processing, such as writing end-of-file records
on tapes.

I$Create performs the same function as 1$Open. If the file manager controls multi-
file devices, a new file is created. File managers that do not support multi-file devices
usually consider I$Create synonymous with 1$Open.

Multi-file device managers usually perform a directory search that is similar to
I$Open. Once found, the file name is removed from the directory. Any media space
that was in use by the file is returned to the free media pool.

I$GetStt is a wild-card call designed to determine the status of various features of a
device (or file manager) that are not generally device independent. The file manager
may perform some specific function such as obtaining the size of a file. Status calls that
are unknown to the file manager are passed to the driver to provide a further means of
device independence.

I$MakDir creates a directory file on multi-file devices. File managers that are
incapable of supporting directories return with the carry bit set and an unknown service
error code in (d1.w).

I$Open opens a file on a particular device. This typically involves allocating required
buffers, initializing path descriptor variables, and parsing the path name. If the file
manager controls multi-file devices, directory searching is performed to locate the
specified file.

0S-9 Technical I/O Manual 1-19

File Manager I/O Service Requests The OS-9 Input/Output System

Name

Description

I$Read

I$ReadLn

I1$Seek

I$SetStt

[$Write

Name

I$Read returns the number of bytes requested to the user’s data buffer. If no further
data is available, an EOF error is returned. I$Read generally performs no editing on
data. Usually, a file manager calls the device driver to read the data into a buffer. The
buffer may be an internal buffer maintained by the file manager or it may be the
application’s buffer. The file manager chooses the appropriate buffer for the driver to
use. If an internal buffer is used, the data is then copied into the user’s data area.

I$ReadLn differs from I$Read in two respects. First, ISReadLn is expected to termi-
nate when the first end-of-record character (carriage return) is encountered. Second,
I$ReadLn performs any input editing that is appropriate for the device. Typically,
I$ReadLn uses an internal buffer when calling the driver and copies the data from the
buffer into the user’s data area.

File managers that support random access devices use I$Seek to position file pointers
of the already open path to the specified byte. This is a logical movement and does not
necessarily affect the physical device. If the position is beyond the current end-of-file,
no error is produced at the time of the 1$Seek.

File managers that do not support random access usually do nothing during the 1$Seek
operation, and do not return an error.

I$SetStt is the same as the I$GetStt function except that it is generally used to set the
status of various features of a device (or file manager). The file manager may perform
some specific function such as setting the size of a file to a given value. Status calls
that are unknown to the file manager are passed to the driver to provide a further means
of device independence. For example, an 1$SetStt call to format a disk track may
behave differently on different types of disk controllers.

The I$Write request, like ISRead, generally performs no editing on data. Usually, the
I$Read and I$Write routines are nearly identical. The most notable difference is that
I$Write uses the device driver’s output routine instead of the input routine. Writing
past the end-of-file on a device expands the file with new data.

RBF and similar random access devices that use fixed-length records (sectors) must
often pre-read a sector before writing it unless the entire sector is being written.

Description

[$WritIn

I$Writln is the counterpart of ISReadLn. It calls the device driver to transfer data up
to and including the first (if any) end-of-record (carriage return) encountered.
Appropriate output editing is also performed. For example, after a carriage return, SCF
usually outputs a line-feed character and nulls (if appropriate).

1-20

0S-9 Technical I/O Manual

The OS-9 Input/Output System Device Driver Modules

Device Driver Modules

Device driver modules perform basic low-level physical input/output functions. For example, a disk
driver’s basic function is to read or write a physical sector. The driver is not concerned about files,
directories, etc., which are handled at a higher level by the OS-9 file manager.

When written properly, a single physical driver module can support multiple identical hardware interfaces
simultaneously. The specific information for each physical interface (port address, initialization constants,
etc.) is provided in the device descriptor module.

Driver Module Format

All drivers must conform to the standard OS-9 memory module format. The module type code is Drivr.
Drivers should have the system-state bit set in the attribute byte of the module header.

NOTE: 1/0 system modules must have the following module attributes:

e They must be owned by a super-user (0.n).

» They must have the system-state bit set in the attribute byte of the module header. (OS-9 does
not currently make use of this, but future revisions will require that 1/0O system modules be
system-state modules.)

A sample assembly language header is shown below:

* Module Header

Type_Lang equ (Drivr<<8)+Objct
Attr_Revs equ ((ReEnt+Supstat)<<8)+0

psect Acia, Typ_Lang,Attr_Rev,Edition,0,AciaEnt

* Entry Point Offset Table

AciaEnt dc.w Init Initialization routine offset
dc.w Read Read routine offset
dc.w Write Write routine offset
dc.w GetStat Get dev status routine offset
dc.w SetStat Set dev status routine offset
dc.w TrmNat Terminate dev routine offset
dc.w Trap Error handler routine offset (O=none)

The M$Exec module header field is the offset to the address of an offset table. This table specifies the
starting address of each of the seven driver subroutines relative to the base address of the module.

The M$Mem module header field specifies the amount of local static storage required by the driver. This
is the sum of the global 1/O storage, the storage required by the file manager, and any variables and tables
declared in the driver.

0S-9 Technical I/O Manual 1-21

Driver Module Format The OS-9 Input/Output System

The driver subroutines are called by the associated file manager and the kernel through the offset table,
with the exception of the device driver’s IRQ routine (if any) which is called directly by the kernel’s IRQ
polling routines. The driver routines are always executed in system state. Regardless of the device type,
the standard parameters listed below are passed to the driver in the corresponding registers. Other
parameters may also be passed, depending on the device type and subroutine called. These are described
in individual file manager chapters.

INIT and TERM (called by the kernel):

(@al) The address of the device descriptor module.

(@a2) The address of the driver’s static variable storage.

(@a4) The address of the process descriptor requesting the 1/0 function.
(a6) The address of the system global variable storage area.

INIT initializes the device controller hardware and related driver variables as required. INIT also
enables device interrupts and adds the device to the system’s IRQ polling table, if necessary.

TERM de-initializes the device. It is assumed that the device will not be used again unless re-
initialized. TERM also deletes the device from the IRQ polling table and disables interrupts, if
necessary.

Refer to Figure 1-3 for a diagram of the 1/0 system layout during the INIT and TERM routines.

READ, WRITE, GETSTAT and SETSTAT (called by the file manager):

(@al) The address of the path descriptor storage.

(a2) The address of the driver’s static variable storage.

(a4) The address of the process descriptor requesting the 1/0 function.
(@5) The address of the caller’s register stack image.

(a6) The address of the system global variable storage area.

READ reads one or more standard physical units (a character or sector, depending on the device
type). WRITE writes one or more standard physical units (a character or sector, depending on the
device type).

GETSTAT returns a specified device status. SETSTAT sets a specified device status.

CAVEAT: The register conventions shown above apply to RBF and SCF. For SBF’s READ and
WRITE routines, the contents of registers al and a5 are undefined. For SBF’s GETSTAT and
SETSTAT routines, the contents of register a5 are undefined. Other file managers may adopt
whatever register conventions are desired.

Refer to Figure 1-4 for a diagram of the 1/0 system layout during the READ, WRITE, GETSTAT,
and SETSTAT routines.

1-22

0S-9 Technical I/O Manual

The OS-9 Input/Output System Driver Module Format

TRAP (also known as ERROR; not currently called):

This entry point is currently not used by the kernel, but in the future will be defined as the offset to
error exception handling code. Because no handler mechanism is currently defined, this entry
point should be set to zero to ensure future compatibility.

IRQ (called by the kernel’s IRQ polling table handler):

(a2) The address of the driver’s static variable storage.
(@a3) The address of the device port.
(a6) The address of the system global variable storage area.

The IRQ subroutine is not called by the file manager, but by the kernel’s interrupt polling routine.
It communicates with the driver’s main section through the static storage and certain system calls.

NOTE: The values passed in a2 and a3 are, by convention, as described above. The values are
those that existed in the respective registers when the device was installed on the IRQ polling table
(F$IRQ). Register a2 is usually passed to enable the IRQ service routine to access the driver’s
static storage. Register a3 can have any value desired, because the hardware is never accessed by
the kernel’s IRQ polling routine.

IRQ may only destroy values in the following registers: d0, d1, a0, a2, a3, and a6. If the interrupt
was serviced, IRQ returns the carry bit clear. If not serviced, IRQ returns the carry bit set. This
provides the kernel’s IRQ polling routine with an indication that it should call the IRQ service
routine associated with the next lowest priority device on the vector.

Refer to Figure 1-5 for a diagram of the 1/0 system layout during the IRQ service routine.
Each subroutine is terminated by a RTS instruction. Error status is returned using the CCR carry bit with

an error code returned in register d1.w. For the IRQ service routine, only the CCR carry status is mean-
ingful.

0S-9 Technical I/O Manual 1-23

I/O System Layout The OS-9 Input/Output System

I/O Request:
I$Attach/I$Detach

Device
Table

0S-9 Kernel
Kernel

Globals

A 4

IRQ Polling
Table

_ _ Current
Device Driver » Process
(INIT/TERM) Descriptor

S
S
S

Device M

Hardware

Device
Descriptor
Device
Static
Storage

—» pointer
——= execution path
[h ar d ware o p erat | on

Typical system calls made by the driver include » system calls
(if any): FIRQ, FSRgqMem, F$SRtMem

Figure 1-3: 1/O System Layout for INIT/TERM Routines

1-24 0S-9 Technical I/O Manual

The OS-9 Input/Output System

I/0 System Layout

I/O Request*

0S-9 Kernel

* [$Read, I$ReadLn, ISWrite, I$Writln, I$GetStt, 1$SetStt

Active Sleep Event
Queue Queue Queue

T 1

Kernel

A 4

Globals

Device
Table

Path
Table

Path

Device
Static
Storage

Device
Driver

> Descriptor

Hardware

Current
Process
Descriptor

pointer

execution path

hardware operation

system calls

pointer (not for SBF READ/WRITE)

Typical system calls made by the driver include (if any):
F$Sleep, F$Event, F$CCtl, F$SRgMem, F$SRtMem

Figure 1-4: 1/O System Layout for READ/WRITE/GETSTAT/SETSTAT Routines

0S-9 Technical I/O Manual

1-25

I/O System Layout The OS-9 Input/Output System

Hardware IRQ
Exception

Active Sleep Event
Queue Queue Queue

IRQ Polling
Table

0S-9 Kernel

Exception
Handler

Kernel
Globals

Sy
Device | ££
. &5
Driver 8§
= Device
Static
Storage

Hardware

——» pointer
——= execution path
hardware operation

Typical system calls made by the driver include =) system calls
(if any): F$Send, F$Event, F$CCtl

Figure 1-5: 1/0O System Layout for IRQ Service Routine

1-26 0S-9 Technical I/O Manual

The OS-9 Input/Output System Simple Devices

Device Drivers That Control Multiple Devices

Properly written re-entrant device drivers can handle more than one physical hardware device. The driver
is responsible for isolating the file manager from the specifics of the device interface. The device
descriptor tailors the device driver to the actual physical parameters of the hardware in use (for example,
port address, interrupt level, etc.). Consequently, adding hardware ports to a system is generally a matter
of creating new device descriptors for the new ports.

This section highlights some of the issues that arise when dealing with multi-port/multi-device hardware.
It discusses three general types of hardware devices:

» Simple Devices
e Multi-Port Devices
* Multi-Class Devices

Simple Devices

Simple devices provide a single discrete 1/0O interface, such asa UART (Universal Asynchronous Receiver
Transmitter) or a disk controller. If a system has a driver for a specific simple device, instances of that
device can be created by building new device descriptors. This can usually be accomplished by editing an
existing descriptor and installing the new hardware and descriptor on the system.

The 1/0 system creates a new incarnation of the device driver when each device is installed in the system.
Each incarnation of the driver has its own static storage area; therefore, the operating parameters for each
device are separated from those of similar devices.

The 1/0 system considers a device a new device when its device table entry (port address, device
descriptor, driver, and file manager) differs from all existing device table entries. When this condition is
detected, the new device is added to the I/O system and the device’s INIT routine is called.

NOTE: If the new device differs only in that its device descriptor is different (same port address, device
driver, and file manager), a new entry is made into the device table, but the INIT routine is not called. This
is how multi-device, single-controller devices are handled. An example of this is a disk controller
supporting more than one drive. The INIT routine is called only once for these devices - at the first
I$Attach to any device on this port. In this case, no new incarnation of the driver will occur. The device
driver usually discriminates between the devices on the port by means of “logical” devices. For example,
a RBF disk controller controlling four drives uses the PD_DRV field of the device descriptor to
discriminate between each drive.

0S-9 Technical I/O Manual 1-27

Multi-Port Devices The OS-9 Input/Output System

Generally, most OS-9 device drivers are expected to handle only one request from a file manager at a time.
The mechanism that ensures proper handling of access requests is called 1/0 Blocking. It is usually
performed by the file manager associated with the device, using the V_BUSY variable of the driver’s static
storage. RBF, SCF, SBF, and PIPEMAN implement 1/0 Blocking in this manner. Consequently, a driver
written to work with one of these file managers need handle only one request at a time. For example, the
disk access request to drive 0 of a controller must be completed before RBF makes an access request to
drive 1.

I/0 blocking does not affect different devices that use the same driver. This is because the 1/0 blocking
function is performed on a port address basis; V_BUSY is unique to each static storage area. Drivers
written for other file managers (for example, NFM) may have to deal with more than request at a time,
depending upon how the file manager operates.

Multi-Port Devices

Multi-port devices provide more than one physical 1/0 channel. If the hardware implementation totally
separates the physical 1/0 channels, the device can be treated as multiple simple hardware devices. An
example of this would be a DUART (Dual Universal Asynchronous Receiver Transmitter), a device that
provides two separate channels, each with an independent register set. Typically, the only difference
between the two device descriptors is the port address. This allows separate incarnations of the driver to
control each relevant part of the device.

If, however, the device contains registers that are common between the physical I/O channels, problems
can arise with interaction between the incarnations of the driver running on the different ports.

A common example of this situation is the MC68681 DUART. This device contains register sets that are
associated with each individual channel and register sets that are common to both channels. The common
registers present a problem, in this case, because they are write-only registers. Each incarnation of the
driver needs to manipulate these registers, but has no knowledge of the current state of the other-side
values.

1-28 0S-9 Technical I/O Manual

The OS-9 Input/Output System Multi-Port Devices

Without a mechanism for sharing these values, manipulation of the common registers can cause a driver
to produce inadvertent side effects on the “other” channel. However, you can easily overcome this
situation by using one of the following techniques:

OEM Global Storage

The OEM global storage area is a 256-byte area in the system globals of the kernel. This area
is provided for system-specific, custom storage allocation. In the case of the common write-
only registers, the system can be configured so that memory images of these registers are stored
in the OEM global area. When an incarnation of the driver wishes to modify a common
register, it must locate the appropriate image stored in RAM, modify it, store the new image
back in RAM, and update the hardware. Using this scheme, multiple incarnations of the driver
can operate without affecting other incarnations.

The allocation of storage within the OEM global area is system-specific and is usually defined
by the individual system designer (OEM). For these types of devices, the device descriptor’s
DevCon section is often used to store a pointer to the area allocated for the particular device in
the OEM globals.

Using the OEM global area to overcome the problems with multi-port device drivers has the
following advantages:

» For the system boot-ROM’s console and communications ports, it allows high-level
interrupt-driven drivers to communicate current register values to low-level polled
I/O routines in the boot-ROM code. Consequently, correct system operation results
when switching the console port between the operating system and the boot ROMs.

» It allows multiple-function devices that share different types of device drivers to
communicate current register values between the drivers. The MC68681 DUART
is a prime example of this type of device: it has two serial channels and a tick-timer
device.

Data Modules

For drivers that only need to communicate between themselves (they do not need to
communicate to low-level boot-ROM routines), the use of data modules to store common
register values may also be an option. The driver’s INIT routine would dynamically determine
the storage area to be used by attempting to create/link the data module. Once the storage has
been created/found, then the driver can manipulate the required images in the same way that
the OEM global storage variables are accessed.

NOTE: This technique often does not require DevCon values to indicate the storage to be
used. Incarnations of the driver only have to agree on the naming convention to adopt when
forming the data module’s name. For example, you could use a common part of the port
address as part of the name.

0S-9 Technical I/O Manual 1-29

Multi-Port Devices The OS-9 Input/Output System

Depending upon the system’s requirements, other techniques may also be appropriate for managing these
situations, such as using the OS-9 event system.

1-30 0S-9 Technical I/O Manual

The OS-9 Input/Output System Multi-Class Devices

Multi-Class Devices

Creating drivers for 1/0O systems that support more than one class of 1/0 device (for example, disk and tape
devices on a SCSI bus) presents a different set of problems. However, these problems are generally easy
to solve. The most common problems for these devices involve 1/O blocking and sensitivity to device
class.

Because 1/0 blocking is usually performed at the file manager level, a common driver supporting two
classes of devices (for example, RBF and SBF) may be called by one file manager while running on behalf
of another file manager. Therefore, the driver must be written to handle this case or at least provide 1/0
blocking.

In addition, the layout of the path descriptor options and device static storage is different for each device
class. Because the device driver has to be continually sensitive to the device class, the driver is somewhat
cumbersome to write. The net effect is attempting to merge two separate drivers into a single piece of
code.

To simplify these problems, the technique that is usually adopted is to split the driver into high-level and
low-level functions. The high-level portion of the driver is the actual “device driver,” as it is the module
called directly by the file manager. This module deals with all issues related to the device class (for
example, static storage allocations, operational characteristics) and the target hardware (for example,
command protocols). Once the request has been prepared by the driver, it calls the low-level subroutine
module, which is designed to manage the physical interface. The low-level module has no knowledge of
the device class or type of operation required. Its function is to manage the 1/0 requests (with I/O blocking,
if necessary) from multiple drivers through the physical interface.

When this technique is adopted, the DevCon section of the device descriptor is usually used as a name
string for the low-level module to be used. The individual high-level device drivers can link/unlink to the
module and call it, if necessary, during its INIT/TERM routines.

Examples of Multi-Class Devices Using SCSI System Concept

The basic premise of this system is to break the OS-9 driver into separate high-level and low-level areas
of functionality. This allows different file managers and drivers to talk to their respective devices on the
SCSI bus.

The device driver handles the high-level functionality. The device driver is the module that is called
directly by the appropriate file manager. Drivers deal with all controller-specific/device-class issues (for
example, disk drives on an OMTI5400). They should be written so that they are “portable” code (no
MPU/CPU specific code). The high-level drivers prepare the command packets for the SCSI target device
and then pass this packet to the low-level subroutine module.

0S-9 Technical I/O Manual 1-31

Multi-Class Devices The OS-9 Input/Output System

This low-level module passes the command packet (and data if necessary) to the target device on the SCSI
bus. The low-level code does NOT concern itself with the contents of the commands/data, it simply
performs requests on behalf of the high-level driver. The low-level module is also responsible for co-
ordinating all communication requests between the various high-level drivers and itself. The low-level
module is often an MPU/CPU specific module, and thus can often be written as an optimized module for
the target system.

The device descriptor module contains the name strings for linking the modules together. The file manager
and device driver names are specified in the normal way. The low-level module name associated with the
device is indicated via the DevCon offset in the device descriptor. This offset pointer points to a string
containing the name of the low-level module.

An example system setup shows how drivers for disk and tape devices can be mixed on the SCSI bus
without interference:

Hardware Configuration
OMTI15400 Controller:

e Addressed as SCSI ID 6.
e Hard disk addressed as controller’s LUN 0.
* Floppy disk addressed as controller’s LUN 2.

e Tape drive addressed as controller’s LUN 3.

Fujitsu 2333 Hard Disk with Embedded SCSI Controller:
* Addressed as SCSI ID 0.

Host CPU: MVME147

» Uses WD33C93 SBIC Interface chip.
e “Own ID” of chipis SCSI ID 7.

1-32 0S-9 Technical I/O Manual

The OS-9 Input/Output System Multi-Class Devices

The hardware setup would look like this:

SCSI Bus 147
ID: 7 >
SCs| OMTI'54OO F2§33
Controllers ID: 6 ID: 0
| |
Physical H/D F/ID Tape H/D
Devices LUN 0 LUN 2 LUN 3 LUN 0

Software Configuration:
The high-level drivers associated with this configuration are:

Name Description

RB5400 Handles hard and floppy disk devices on the OMTI15400.
SB5400 Handles tape device on the OMTI5400.

RB2333 Handles hard disk device.

The low-level module associated with this configuration is:

Name Description
SCSI147 Handles WD33C93 Interface on the MVME147 CPU.

0S-9 Technical I/O Manual 1-33

Multi-Class Devices The OS-9 Input/Output System

A conceptual map of the OS-9 modules for this system would look like this:

Kernel
Level 0S-9 Kernel

| |
File Manager .
Level RBF (disks) SBF (tapes)

Device Driver
Level RB5400 RB2333 SB5400

[
Physical Bus
Level SCSI147

If the guidelines previously given are adhered to, expansion and reconfiguration of the SCSI devices (both
in hardware and software) can be easily accomplished. Three examples show how this could be achieved:

Example One

This example describes the addition of a second SCSI bus using the VMEG620 SCSI controller. This sec-
ond bus will have an OMTI5400 controller and associated hard disk.

The VMEG620 module uses the WD33C93 chip as the SCSI interface controller, but it uses a NEC DMA
controller chip. Thus, a new low-level module needs to be created for the VME620 (we will call the
module SCSI620). You can create this module by editing the existing files in the SCSI33C93 directory
to add the VMEG620 specific code. This new code would typically be “conditionalized.” A new makefile
(such as make.vme620) could then be created to allow production of the final SCSI620 low-level
module.

The high-level driver for the new OMTI15400 is already written (RB5400), so you only have to create a
new device descriptor for the new hard disk. Apart from any disk parameter changes pertaining to the
actual hard disk itself (such as the number of cylinders, etc), you could take one of the existing RB5400
descriptors and modify it so that the DevCon offset pointer points to a string containing SCSI1620 (the
new low-level module).

1-34 0S-9 Technical I/O Manual

The OS-9 Input/Output System Multi-Class Devices

The conceptual map of the OS-9 modules for the system would now look like this:

Kernel
Level 0S-9 Kernel

File Manager .
Level RBF (disks) SBF (tapes)
[|
Device Driver
Level RB5400 RB2333 SB5400
. [
Physical Bus
Level SCSI1620 SCSI147
SCSI Bus #2 SCSI Bus #1

Example Two

This example describes the addition of an Adaptec ACB4000 Disk Controller to the SCSI bus on the
MVME147 CPU.

To add a new, different controller to an existing bus, you need to write a new high-level device driver. You
would create a new directory (such as RB4000) and write the high-level driver based upon an existing
example (such as RB5400). You do not need to write a low-level module, as this already exists. You then
need to create your device descriptors for the new devices, with the module name being rb4000 and the
low-level module name being scsil47.

0S-9 Technical I/O Manual 1-35

Multi-Class Devices The OS-9 Input/Output System

The conceptual map of the OS-9 modules for the system would now look like this:

Kernel
Level 0S-9 Kernel

File Manager .
Level RBF (disks) SBF (tapes)

_ _ | | |
pevice Driver | RB5400 RB2333 RBA4000 SB5400

: |
Physical Bus
Level SCSI147
SCSI Bus #1

Example Three

Perhaps the most common reconfiguration will occur when adding additional devices of the same type as
the existing device. For example, adding an additional Fujitsu 2333 disk to the SCSI bus on the
MVME147. To add a similar controller to the bus, all you need to do is create a new device descriptor.
There are no drivers to write or modify, as these already exist (RB2333 and SCSI147). The only
modifications required would be to take the existing descriptor for the RB2333 device and modify it to
reflect the second devices physical parameters (e.g., SCSI ID) and change the actual name of the descriptor
itself.

1-36 0S-9 Technical I/O Manual

The OS-9 Input/Output System Interrupts and DMA

Interrupt Driven I/O

0S-9 is a multi-tasking, real-time operating system. To support these capabilities, 1/0 devices should be,
whenever possible, set up to provide fully interrupt-driven operation. Non-interrupt-driven operation
(polled 1/0O) should only be used for 1/0O devices that are always ready to read/write data (for example,
output to a memory-mapped video RAM). If a driver has to wait for the device to read/write data, then
real-time system operation may be affected.

For character-oriented devices (for example, SCF), the controller should be set up to generate an interrupt
upon the receipt of an incoming character and at the completion of transmission of an outgoing character.
Both the input data and the output data should be buffered in the driver. In the case of block-type devices
(for example, RBF, SBF), the controller should be set up to generate an interrupt upon the completion of
a block read or write operation. It is usually not necessary for the driver to buffer data because the driver
is passed the address of a complete buffer.

Devices are usually added to the system’s IRQ polling table when the device is attached (INIT routine) and
removed from the IRQ polling table when the device is detached (TERM routine). The device is added
and deleted by the driver using the FSIRQ service request. Device drivers for devices that generate
multiple vectors (for example, separate receive and transmit interrupts) or hardware ports that have
multiple devices (for example, disk controllers with associated DMA device) may have to make multiple
F$IRQ calls to add and delete each device in the polling table.

NOTE: The maximum number of devices (device table entries) and interrupting devices (polling table
entries) are defined in the initialization module (“init”). These fields (M$DevCnt and M$PollSz) are user
adjustable.

The kernel does not place any restrictions on which vectors (M$Vector of the device descriptor) may be
used by devices or how many devices may share a vector. If devices share a vector, the priority of the
device on the vector is determined by the IRQ polling priority (M$Prior) specified for the device. As a
general rule, the system integrator should attempt to allocate one device per vector so that the kernel’s IRQ
polling table will “vector” to the correct device immediately.

Interrupt-driven drivers generally consist of two separate execution threads: the driver mainline and the
interrupt service routine. A typical 1/0 operation by the driver consists of the following:
Driver mainline (called by file manager) initiates 1/0 operation and suspends itself.
i Device interrupt occurs and IRQ service routine initiates wake-up of driver mainline.
/A Driver mainline is reactivated and returns to caller.

The synchronization of the driver mainline and IRQ service routine is usually accomplished by one of the
following mechanisms:

0S-9 Technical I/O Manual 1-37

Interrupts and DMA The OS-9 Input/Output System

SIGNALS The driver suspends itself by sleeping (F$Sleep) and is reactivated when the
IRQ service routine sends the driver a signal (F$Send, signal S$Wake). This
is the most common method used by interrupt-driven drivers. The interlock be-
tween the execution threads is usually done using the static storage variable
V_WAKE.

EVENTS The driver suspends itself by waiting on an event (F$Event), and is reactivated
when the IRQ service routine signals the event. The interlock between the
execution threads is done via the event values.

The decision whether to use signals or events for interrupt operation should be based on the complexity of
the driver. If the driver is simple, (only needs to communicate interrupt occurrences) either method is
suitable. If the driver is complicated, (needs to communicate more than one state) the event system is
usually preferred. For example, the event system would be more suitable for a SCSI driver that supports
multiple devices that can disconnect.

The assignment of a device’s physical interrupt level(s) can have a significant impact on system operation.
Generally, the smarter the device, the lower its interrupt level can be set. For example, a disk controller
that buffers sectors can wait longer for service than a single-character buffered serial port. Usually, the
interrupt levels can be assigned according to the system’s requirements, but it is recommended that you
assign the clock tick device the highest possible level to keep interference with system time-keeping at a
minimum.

The following table shows how interrupt levels can be assigned in a typical system:

clock ticker
“dumb” (non-buffering) disk controller

level 6
5:
4: terminal ports
3:
2

printer port
“smart” (sector-buffering) disk controller

CAVEAT: Level 7 is a non-maskable interrupt. It should not be used by OS-9 I/O devices. A device set
at this level can interrupt the kernel during critical system operations. However, level 7 can be used for
hardware operations unknown to the system (for example, dynamic RAM refreshing).

CAVEAT: Exception conditions (such as a Bus Error) should be avoided when IRQ service routines are
executing. Under the current version of the kernel, an exception in an IRQ service routine will crash the
system.

1-38 0S-9 Technical I/O Manual

The OS-9 Input/Output System Interrupts and DMA

DMA /0O and System Caches

Direct Memory Access (DMA) support, if available, significantly improves data transfer speed and gen-
eral system performance, because the MPU does not have to explicitly transfer the data between the 1/0
device and memory. Enabling these hardware capabilities is generally a desirable goal, although systems
that include cache (particularly data cache) mechanisms need to be aware of DMA activity occurring in
the system, so as to ensure that stale data problems do not arise.

Stale data occurs when another bus master writes to (alters) the memory of the local processor. The bus
cycles executed by the other master may not be seen by the local cache/processor. Therefore, the local
cache copy of the memory is inconsistant with the contents of main memory.

The system’s caching algorithms are controlled by two components of OS-9:

» The Syscache module.

¢ The Init module.

Syscache Module

The Syscache module is the global mechanism to invoke caching. If this module is present in the bootstrap
file, caching will occur in the system. If the module is not found during system startup, all cache functions
are disabled.

Default Syscache modules are provided for each class of MPU (for example, the 68020 provides
instruction caching, while the 68030 provides instruction and data caching) so as to support the on-chip
cache capabilities of the system.

You can integrate off-chip (system specific) caches into the system by having the OEM customize the
Syscache module for the CPU module in use.
Init Module

The Init module’s Compat variables also play a role in the cache control for the system. You can set flags
in these variables to fine-tune the kernel’s cache control.

0S-9 Technical I/O Manual 1-39

Interrupts and DMA

The OS-9 Input/Output System

The flags available in the Init module are:

Variable Bit #

Function

M$Compat 3

M$Compat2 0

0
1

P OPFPORFRPROPRF OO

enable burst mode (68030 systems only)
disable burst mode

external instruction cache is NOT snoopy*
external instruction cache is snoopy or absent
external data cache is NOT snoopy

external data cache is snoopy or absent

on-chip instruction cache is NOT snoopy

on-chip instruction cache is snoopy or absent
on-chip data cache is NOT snoopy

on-chip data cache is snoopy or absent

kernel disables data caches when in 1/0

kernel DOES NOT disable data caches when in 1/0

* snoopy = cache that maintains its integrity without software intervention

Avoiding Stale Data Problems

To ensure that stale data problems do not arise, use the following set of guidelines when writing system
code (file managers and device drivers) and setting up the Init module cache flags:

Data-Cache disabling when calling the I/O system
The Init module’s M$Compat2 byte controls whether or not the kernel disables the data cache(s)
when calling the 1/0 system. The flag setting are defined as follows:

Bit7 1 Data caching is on. The kernel does NOT disable data caching when calling the
I/0 system.

0 Data caching is off. The kernel disables the data caches while any process is in
the 1/0O system.

The decision to turn the flag ON (and thus keep data caching ON for 1/O calls) is made depending
upon the following factors. Set the flag ON if one of the following conditons is true:

* If no DMA activity occurs in the 1/0O system.

» If the system cache hardware keeps the caches coherent when DMA activity occurs.
NOTE: The hardware coherency of the caches is indicated to the kernel via other flags

in M$Compat2.

1-40

0S-9 Technical I/O Manual

The OS-9 Input/Output System Interrupts and DMA

» If the caches do not maintain coherency, and DMA drivers exist in the system, and they
ensure that data cache flushes occur (the driver’s perform F$CCtl calls).

If none of the above situations can be guaranteed, stale data situations may arise (often at
unexpected times) and system behavior may be affected. In these cases, leave the flag OFF so that
data cache disabling will occur.

Indication of Cache Coherency
The M$Compat?2 variable also has flags that indicate whether or not a particular cache is coherent.
Flagging a cache as coherent (when it is) allows the kernel to ignore specific cache flush requests,
using F$CCtl. This provides a speed improvement to the system, as unneccessary system calls are
avoided and the caches are only explicitly flushed when absolutely necessary.

NOTE: An absent cache is inherently coherent, so it is important to indicate absent (as well as
coherent) caches.

Device Drivers that use DMA can determine the need to flush the data caches using the kernel’s
system global variable, D_SnoopD. This variable is set to a non-zero value if BOTH the on-chip
and external data caches are flagged as snoopy (or absent). Thus a driver can inspect this variable,
and determine whether a call to F$CCtl is required or not.

0S-9 Technical I/O Manual 1-41

Address Translation and DMA Transfers The OS-9 Input/Output System

Address Translation and DMA Transfers

In some systems, the local address of memory is not the same as the address of the block as seen by other
bus masters. This causes a problem for DMA 1/O drivers, in that the driver is passed the local address of
a buffer, but the DMA device itself requires a different address.

The Init module’s “colored memory” lists provide a means to setup the local/external addressing map for
the system. This mapping can be determined by device drivers in a generic manner using the F$Trans
system call. Thus, you should write drivers that have to deal with DMA devices in a manner that ensures
the code will run on any address mapping situation. You can do this using the following algorithm:

If a pointer must be passed to an external bus master, a call should be made to the kernel’s F$Trans
system call.

If F$Trans returns an "unknown service request™ error, no address translation is in effect for the
system and the driver can pass the unmodified address to the other master.

If F$Trans returns any other error, something is seriously wrong. The driver should return the
error to the file manager.

If F$Trans returns no error, the driver should check that the size returned for the translated block
is the same as the size requested. If so, the address can be passed to the other master. If not, the
driver can adopt one of two strategies:

» Refuse to deal with “split blocks”, and return an error to the file manager.
» Break up the transfer request into multiple calls to the other master, using multiple calls
to F$Trans until the original block has been fully translated.
The first method proposed above (refuse split blocks) is the usual method adopted by drivers, as
the current version of the kernel does allocate memory blocks that span address translation factors.

If drivers adopt these methods, the driver will function irrespective of the address translation issues. Boot
drivers can also deal with this issue in a similar manner by using the TransFact global label in the boot-
strap ROM.

End of Chapter 1

1-42 0S-9 Technical I/O Manual

Random Block File Manager

Random Block
File Manager
(RBF)

RBF General Description

The Random Block File Manager (RBF) is a re-entrant subroutine package for 1/0 service requests to
random-access devices. RBF can handle any number or type of such devices simultaneously (for example,
large hard disk systems, small floppy systems, RAM disk systems, etc.) and is responsible for maintaining
the logical file structure.

Because RBF is designed to support a wide range of devices with different performance and storage
capacities, it is highly parameter-driven.

Some of the physical parameters RBF uses are stored on the media itself. On disk systems, this
information is written on the first few sectors of track number zero. The device drivers also use this
information, particularly the media format parameters stored on sector 0. These parameters are written by
the format program when it initializes and tests the media. Storage systems that initialize themselves
without using format are responsible for establishing the initial file structure of the media themselves (for
example, RAM disk systems).

The following 1/O service requests are handled by RBF:

I$ChgDir I$Close I$Create I$Delete I$GetStt
I$SMakDir I$Open I$Read ISReadLn I$Seek
|$SetStt I$Write ISWritln

The following 1/O service requests do not call RBF:

I$Attach I$Detach I$Dup

0S-9 Technical I/O Manual 2-1

RBF I/O Service Requests Random Block File Manager

RBF 1/0O Service Requests

When a process makes one of the following system calls to an RBF device, RBF executes the file manager
functions described for that call.

I$SChgDir

I$Close

I$Create

I$Delete

RBF performs the following functions:

Sets the directory bit in the access mode
Calls RBF’'s Open routine to search the specified pathlist

If accessible, updates the appropriate default P$DIO pointer in the pro-
cess descriptor

Closes the path opened by the Open routine

RBF performs the following functions:

Flushes any data that has not yet been written to the disk
(any partial block of data left from a previous write call)

Checks the use count in the path descriptor
If the use count is non-zero, no further action is taken. Otherwise, RBF:

» Updates the file descriptor, if necessary
e Trims the file size, if necessary

e Calls the device driver with the SS_Close SetStat
(ignores any returned errors)

RBF performs the following functions:

Initializes the path descriptor to the default option values

Searches directories specified or implied by the pathlist
If the user does not have permission to access a directory element, an error is re-
turned.

If the file is found, RBF will return an error

Creates a directory entry for the new file
If there is no free space in the directory, it is expanded to make room for the new
entry.

Creates and initializes a file descriptor for the file
If an initial size allocation has been specified, RBF attempts to allocate the specified
amount of disk space for the file. 1f not specified, the first ISWrite expands the file.

Calls the device driver with an SS_Open SetStat
RBF ignores E$UNKSvc errors, but aborts I$Create on any other error.

RBF performs the following functions:

2-2

0S-9 Technical I/O Manual

Random Block File Manager RBF I/O Service Requests

Initializes the path descriptor to the default option values

Searches any directories specified or implied by the pathlist
If the user does not have permission to access a directory element, an error is re-
turned.

Checks the permission attributes of the file

The file’s directory bit (dirbit) must be turned off using the SS_Attr SetStat call
before I$Delete is called. To delete the file, the user must have permission to write
to the file and there cannot be other open paths to the file. An error is returned if
these conditions are not met.

Decrements link count in file descriptor

If the link count becomes zero, all disk space associated with the file is returned.
This includes the file’s file descriptor block. If the link count is non-zero, no disk
space is returned.

Removes directory entry for the file

I$GetStt Refer to the I$GetStt description in the OS-9 Technical Manual for a detailed explana-
tion of the RBF supported 1$GetStt functions:

SS _EOF Check for end-of-file condition.

SS FD Get a copy of the file descriptor.
SS_FDInf Get a copy of a specified file descriptor.
SS_Opt Read path descriptor options.

SS Pos Determine file position.

SS_Ready Test for data ready.

SS_Size Determine file’s size.

All other GetStat calls are passed to the driver.

I$MakDir RBF performs a Create operation with the directory bit set for the file access mode. If the
Create succeeds, RBF creates directory entries for “.” and “..” in the new directory file and
then closes the path opened by Create.

1$Open RBF performs the following functions:

Initializes the path descriptor with the default option values

Searches any directories specified or implied by the pathlist
If the user does not have permission to access a directory element, an error is re-
turned.

Checks the permission attributes of the file
If the user does not have permission to open the file in the access mode requested,
an error is returned.

Updates the last modified date in the file descriptor, if open for writing

0S-9 Technical I/O Manual 2-3

RBF I/O Service Requests Random Block File Manager

I$Read

I$ReadLn

I$Seek

|$SetStt

» Calls the device driver with the SS_Open SetStat
RBF ignores ESUNkSvc errors, but aborts the I$Open on any other error.

RBF performs the following functions:

* Attempts to acquire arecord lock of the section of the file
If the record is in use, RBF waits for the time specified by the SS_Ticks SetStat
call. This value defaults to zero, resulting in an indefinite sleep until the record be-
comes available.

* Determines if there is data left to read in the file
If there is none, an end-of-file error (E$EOF) is returned.

» Calls the driver to read the data, as needed by RBF
Complete blocks of data are transferred directly into the process’s buffer. Partial
blocks are read into a buffer maintained by RBF after which the portion of data re-
quested from those blocks are copied into the calling process’s buffer. If the re-
quested data was found in a buffer from a previous read, RBF copies the data to the
calling process’s buffer without calling the driver.

If the file is open only for reading, the record lock on the requested section is released im-
mediately. If the file is open for update, the record remains locked. A read of O bytes, a
read of a different section, or an I$SWrite releases the current section’s record lock.

I$ReadLn is similar to ISRead, except that RBF maintains a buffer to read data into using
single sector reads. It searches the data until it locates the first end-of-record character (car-
riage return), or reads the number of bytes requested, whichever comes first. It copies the
read buffer into the process’s buffer as necessary.

If the file is open only for reading, the record lock on the requested section is released im-
mediately. If the file is open for update, the record remains locked. A read of O bytes, a
read of a different section, or an I$Write releases the current section’s record lock.

NOTE: The portion of the file that is record locked begins at the file position from where
the ISReadLn call was made and continues through the number of bytes requested, regard-
less of whether the EOR is found earlier.

RBF sets the current position in the path descriptor to the specified position. If RBF’s
internal buffer contains a sector which contains modified data, and the new position is not
in that sector, the driver is called to write that sector before the current position in the path
descriptor is updated.

Refer to the I$SetStt description in the OS-9 Technical Manual for a detailed explana-
tion of the RBF supported 1$SetStt functions:

2-4

0S-9 Technical I/O Manual

Random Block File Manager RBF I/O Service Requests

SS_Attr Set file’s permission attributes.
SS_FD Write some file descriptor information.
SS Lock Record lock a portion of the file.
SS_Opt Write the path descriptor options.
SS_RsBit Reserve bitmap sector.

SS_Size Set the file’s size.

SS Ticks Set the record locking time-out value.

All other SetStat calls are passed to the driver.

NOTE: SS_Opt is passed to the driver after processing by RBF. If an unknown service
request error (E3UnkSvc) is returned by the driver, it is ignored.

0S-9 Technical I/O Manual 2-5

RBF I/O Service Requests Random Block File Manager

I$Write

[$Writln

RBF performs the following functions:

* Attempts to acquire arecord lock of the section of the file
If the record is in use, RBF waits for the time specified by the SS_Ticks SetStat
call. This value defaults to zero which results in an indefinite sleep until the record
becomes available.

* Expands thefile, if necessary

» Calls the driver to write the data, as needed
Complete blocks of data are transferred directly from the process’s buffer. Partial
blocks are copied into a buffer maintained by RBF. This data is written after a sub-
sequent write fills the buffer, or a seek, read, or write is done to another portion of
the file, or when the file is closed.

Any active record lock is released once the section has been written. A write of zero bytes
also releases the record lock.

I$Writln is similar to I$Write, except that RBF searches the calling process’s data buffer
for an end-of-record character (carriage return). If one is found, only the data up to that
end-of-record character is written. If no end-of-record character is found, RBF writes the
number of bytes specified by the caller.

Any active record lock is released once the section has been written. A write of 0 bytes also
releases the record lock.

0S-9 Technical I/O Manual

Random Block File Manager

RBF Device Descriptor Modules

RBF Device Descriptor Modules

This section describes the definitions of the initialization table contained in device descriptor modules for
RBF devices. The table immediately follows the standard device descriptor module header fields. The
size of the table is defined in the M$Opt field.

Device Descriptor

Path Descriptor

Offset Label Description

$48 PD DTP Device Class

$49 PD DRV Drive Number

$4A PD_STP Step Rate

$4B PD _TYP Device Type

$4C PD_DNS Density

$4D Reserved

$4E PD_CYL Number of Cylinders

$50 PD_SID Number of Heads/Sides

$51 PD_VFY Disk Write Verification

$52 PD_SCT Default Sectors/Track

$54 PD_TOS Default Sectors/Track 0

$56 PD_SAS Segment Allocation Size

$58 PD_ILV Sector Interleave Factor

$59 PD_TFM DMA Transfer Mode

$5A PD_TOffs Track Base Offset

$5B PD_SOffs Sector Base Offset

$5C PD_SSize Sector Size (in bytes)

$5E PD_Cntl Control Word

$60 PD_Trys Number of Tries

$61 PD_LUN SCSI Unit Number of Drive

$62 PD_WPC Cylinder to Begin Write Precompensation
$64 PD_RWR Cylinder to Begin Reduced Write Current
$66 PD_Park Cylinder to Park Disk Head

$68 PD_LSNOffs Logical Sector Offset

$6C PD_TotCyls Number of Cylinders On Device
$6E PD_CitririD SCSI Controller ID

$6F PD_Rate Data transfer/Disk Rotation Rates
$70 PD_ScsiOpt SCSI Driver Options Flags

$74 PD_MaxCnt Maximum Transfer Count

NOTE: In this table the offset values are the device descriptor offsets, while the labels are the path
descriptor offsets. To correctly access these offsets in a device descriptor using the path descriptor labels,
you must make the following adjustment: (M$DTyp - PD_OPT)

0S-9 Technical I/O Manual

2-7

RBF Device Descriptor Modules Random Block File Manager

For example, to access the drive number in a device descriptor, use PD_DRV + (M$DTyp - PD_OPT).
To access the drive number in the path descriptor, use PD_DRV. Module offsets are resolved in assembly
code by using the names shown here and linking with the relocatable library: sys.| or usr.l.

Name Description

PD _DTP Device Type
This field is set to one for RBF devices.

PD DRV Drive number

This field is used to associate a one-byte logical integer with each drive that a
driver/controller will handle. Each controller’s drives should be numbered 0 to n-1 (n is
the maximum number of drives the controller can handle and is set into V_NDRYV by the
driver’s INIT routine). This number defines which drive table the driver and RBF access
for this device. RBF uses this number to set up the drive table pointer (PD_DTB). Prior
to initializing PD_DTB, RBF verifies that PD_DRYV is valid for the driver by checking for
a value less than V_NDRYV in the driver’s static storage. If not, RBF aborts the path open
and returns an error. On simple hardware, this logical drive number is often the same as
the physical drive number.

PD_STP Step rate
This field contains a code that sets the drive’s head-stepping rate. To reduce access time,
the step rate should be set to the fastest value of which the drive is capable. For floppy
disks, the following codes are commonly used:

Step Code 5" Disks 8" Disks

0 30ms 15ms
1 20ms 10ms
2 12ms 6ms
3 ems 3ms

For hard disks, the value in this field is usually driver dependent.

2-8 0S-9 Technical I/O Manual

Random Block File Manager RBF Device Descriptor Modules

PD_TYP Disk Type
Defines the physical type of the disk, and indicates the revision level of the descriptor.

If bit 7 = 0, floppy disk parameters are described in bits 0-6:
bit 0: 0= 51/4" floppy disk (pre-Version 2.4 of 0S-9)

1= 8" floppy disk (pre-Version 2.4 of OS-9)

bits 1-3: 0= (pre-Version 2.4 descriptor) Bit 0 describes type/rates.
1= 8" physical size
2= 51/4" physical size
3= 31/2" physical size
4-7: Reserved

bit 4: Reserved
bit 5: 0= Track 0, side 0, single density
1= Track 0, side 0, double density

bit 6: Reserved
If bit 7 = 1, hard disk parameters are described in bits 0-6:

bits 0-5: Reserved

bit 6: 0 = Fixed hard disk
1= Removable hard disk

PD_DNS Disk Density *
Indicates the hardware density capabilities of a floppy disk drive:
bit O: 0 = Single bit density (FM)
1= Double bit density (MFM)
bit 1: 1= Double track density 96 TPI/135 TPI)
bit 2: 1= Quad track density (192 TPI)
bit 3: 1= Octal track density (384 TPI)

PD _CYL Number of cylinders (tracks) *
Indicates the logical number of cylinders per disk. Format uses this value, PD_SID, and
PD_SCT to determine the size of the drive. PD_CYL is often the same as the physical
cylinder count (PD_TotCyls), but can be smaller if using partitioned drives
(PD_LSNOffs) or track offsetting (PD_TOffs).

If the drive is an autosize drive (PD_Cntl), format ignores this field.

* These parameters are format specific.

0S-9 Technical I/O Manual 2-9

RBF Device Descriptor Modules Random Block File Manager

Name Description
PD _SID Heads or Sides *
This field indicates the number of heads for a hard disk (Heads) or the number of surfaces
for a floppy disk (Sides). If the drive is an autosize drive (PD_Cntl), format ignores this
field.
PD_VFY Verify Flag
This field indicates whether or not to verify write operations.
0 = verify disk write
1 = no verification
NOTE: Write verify operations are generally performed on floppy disks. They are not
generally performed on hard disks because of the lower soft error rate of hard disks.
PD_SCT Default sectors/track*
This field indicates the number of sectors per track. If the drive is an autosize drive
(PD_Cntl), format ignores this field.
PD_TOS Default Sectors/Track (Track 0) *
This field indicates the number of sectors per track for track 0. This may be different than
PD_SCT (depending on specific disk format). If the drive is an autosize drive (PD_Chntl),
format ignores this field.
PD_SAS Segment allocation size
Indicates the default minimum number of sectors to be allocated when a file is expanded.
Typically, this is set to the number of sectors on the media track (for example, 8 for floppy
disks, 32 for hard disks), but can be adjusted to suit the requirements of the system.
PD_ILV Sector interleave factor *

Indicates the sequential arrangement of sectors on a disk (for example, 1, 2, 3...0r 1, 3, 5...).
For example, if the interleave factor is 2, the sectors are arranged by 2’s (1, 3, 5...) starting
at the base sector (see PD_SOffs).

NOTE: Optimized interleaving can drastically improve 1/O throughput.

NOTE: PD_ILV is typically only used when the media is formatted, as format uses this
field to determine the default interleave. However, when the media format occurs
(I$SetStat, SS_WTrk call), the desired interleave is passed in the parameters of the call.

* These parameters are format specific.

2-10

0S-9 Technical I/O Manual

Random Block File Manager RBF Device Descriptor Modules

Name Description

PD_TFM DMA (Direct Memory Access) transfer mode
Indicates the mode of transfer for DMA access, if the driver is capable of handling different
DMA modes. Use of this field is driver dependent.

PD _TOffs Track base offset *
This field is the offset to the first accessible physical track number. Track 0 is not always
used as the base track because it is often a different density.

PD_SOffs Sector base offset *
This field is the offset to the first accessible physical sector number on a track. Sector 0 is
not always the base sector.

PD_SSize Sector Size

Indicates the physical sector size in bytes. The default sector size is 256. Depending upon
whether the driver supports non-256 byte logical sector sizes (that is, a variable sector size
driver), the field is used as follows:

* Variable Sector Size Driver
If the driver supports variable logical sector sizes, RBF inspects this value during a
path open (specifically, after the driver returns “no error” on the SS_VarSect
GetStat call) and uses this value as the logical sector size of the media. This value
is then copied into PD_SctSiz of the path descriptor options section, so that
applications programs can know the logical sector size of the media, if required.
RBF supports logical sector sizes from 256 bytes to 32,768 bytes, in integral binary
multiples (256, 512, 1024, etc.).

During the SS_VarSect call, the driver can validate or update this field (or the me-
dia itself) according to the driver’s conventions. These typically are:

¢ If the driver can dynamically determine the media’s sector size, and
PD_SSize is passed in as 0, the driver updates this field according to the
current media setting.

i If the driver can dynamically set the media’s sector size, and PD_SSize is
passed in as a non-zero value, the driver sets the media to the value in
PD_SSize (this is typical when re-formatting the media).

- If the driver cannot dynamically determine or set the media sector size, it
usually validates PD_SSize against the supported sector sizes, and returns an
error (E$SectSiz) if PD_SSize contains an invalid value.

* These parameters are format specific.

0S-9 Technical I/O Manual 2-11

RBF Device Descriptor Modules Random Block File Manager

* Non-Variable Sector Size Driver
If the driver does not support variable logical sector sizes (that is, logical sector size
is fixed at 256 bytes), RBF ignores PD_SSize. In this case, PD_SSize can be
used to support deblocking drivers that support various physical sector sizes.

NOTE: A non-variable sector sized driver is defined as a driver which returns the
E$UnkSvc error for GetStat (SS_VarSect).

PD_Cntl Device Control Word
Indicates options that reflect the capabilities of the device. These options may be set
by the user, as follows:

bit O: 0 = Format enable
1 = Format inhibit

bit1: 0= Single-Sector I/O
1 = Multi-Sector 1/0O capable

bit 2: 0 = Device has non-stable ID
1 = Device has stable ID

bit3: 0= Device size determined from descriptor values
1 = Device size obtained by SS_DSize GetStat call

bit4: 0= Device cannot format a single track
1 = Device can format a single track

bit 5-15: Reserved

2-12 0S-9 Technical I/O Manual

Random Block File Manager RBF Device Descriptor Modules

Name

Description

PD_Trys

PD_LUN

PD_WPC

PD_RWR

Number of Tries

Indicates whether a driver should try to access the disk again before returning an error.
Depending upon the driver in use, this field may be implemented as a flag or a retry
counter:

Value Flag Counter

0 retry ON default number of retries
1 retry OFF no retries
other retry ON specified number of retries

Drivers that work with controllers that have error correcting functions (for example,
E.C.C. on hard disks) should treat this field as a flag so they can set the controller’s error
correction/retry functions accordingly.

When formatting media, especially hard disks, the format-enabled descriptor should set
this field to one (retry OFF) to ensure that marginal media sections are marked out of
the media free space.

Logical Unit Number of SCSI Drive

Used in the SCSI command block to identify the logical unit on the SCSI controller. To
eliminate allocation of unused drive tables in the driver static storage, this number may
be different from PD_DRYV. PD_DRYV indicates the logical number of the drive to the
driver, that is, the drive table to use. PD_LUN is the physical drive number on the
controller.

First Cylinder to Use Write Precompensation
Indicates the cylinder to begin write precompensation.

First Cylinder to Use Reduced Write Current
Indicates the cylinder to begin reduced write current.

0S-9 Technical I/O Manual 2-13

RBF Device Descriptor Modules Random Block File Manager

Name

Description

PD_Park

PD_LSNOffs

PD_TotCyls

PD_CitrirID

PD_ScsiOpt

Cylinder Used to Park Head

Indicates the cylinder at which to park the hard disk’s head when the drive is shut down.
Parking is usually done on hard disks when they are shipped or moved and is imple-
mented by the SS_SQD SetStat to the driver.

Logical Sector Offset

The offset to use when accessing a partitioned drive. The driver adds this value to the
logical block address passed by RBF prior to determining the physical block address on
the media. Typically, using PD_LSNOffs is mutually exclusive to using PD_TOffs.

Total Cylinders on Device

Indicates the actual number of physical cylinders on a drive. It is used by the driver to
correctly initialize the controller/drive. PD_TotCyls is typically used for physical
initialization of a drive that is partitioned or has PD_TOffs set to a non-zero value. In
this case, PD_CYL denotes the logical number of cylinders of the drive. If
PD_TotCyls is zero, the driver should determine the physical cylinder count by using
the sum of PD_CYL and PD_TOffs.

SCSI Controller ID
The ID number of the SCSI controller attached to the drive. The driver uses this
number to communicate with the controller.

SCSI Driver Options Flags
Indicate the SCSI device options and operation modes. It is the driver’s responsibility
to use or reject these values, as applicable.

bit0: 0= ATN not asserted (no disconnect allowed)
1 = ATN asserted (disconnect allowed)

bit1: 0= Device cannot operate as a target
1 = Device can operate as a target

bit2: 0= Asynchronous data transfer
1 = Synchronous data transfer

bit3: 0= Parity off
1 = Parity on

All other bits are reserved.

2-14

0S-9 Technical I/O Manual

Random Block File Manager RBF Device Descriptor Modules

Name Description

PD_Rate Data Transfer/Rotational Rate
Contains the data transfer rate and rotational speed of the floppy media. Note that this
field is normally used only when the physical size field (PD_TYP, bits 1-3) is non-zero.

bits 0-3: Rotational speed

0= 300RPM
1= 360 RPM
2= 600 RPM

All other values are reserved.
bits 4-7: Data transfer rate

= 125K bits/sec
= 250K bits/sec
= 300K bits/sec
= 500K bits/sec
= 1M bits/sec
= 2M bits/sec
= 5M bits/sec

All other values are reserved.

PD_MaxCnt Maximum Transfer Count
Contains the maximum byte count that the driver can transfer in one call. If this field
is 0, RBF defaults to the value of $ffff (65,535).

0S-9 Technical I/O Manual 2-15

RBF Path Descriptor Definitions Random Block File Manager

RBF Path Descriptor Definitions

The first 26 fields of the path options section (PD_OPT) of the RBF path descriptor are copied directly
from the device descriptor standard initialization table. All of the values in this table may be examined
using 1$GetStt by applications using the SS_Opt code. Some of the values may be changed using 1$Set-
Stt; some are protected by the file manager to prevent inappropriate changes.

Refer to the previous section on RBF device descriptors for descriptions of the first 26 fields. The last five
fields contain information provided by RBF:

Name Description

PD ATT File Attributes
The file’s attributes are defined as follows:

bit 0: Set if owner read.

bit 1: Set if owner write.

bit 2: Set if owner execute.

bit 3: Set if public read.

bit 4: Set if public write.

bit 5: Set if public execute.

bit 6: Set if only one user at a time can open the file.
bit 7: Set if directory file.

PD_FD File Descriptor
The LSN (Logical Sector Number) of the file’s file descriptor is written here.

PD_DFD Directory File Descriptor
The LSN of the file’s directory’s file descriptor is written here.

PD_DCP File’s Directory Entry Pointer
The current position of the file’s entry in its directory.

PD_DVT Device Table Pointer (copy)
The address of the device table entry associated with the path.

PD_SctSiz Logical Sector Size
The logical sector size of the device associated with the path. If this is 0, assume a size of
256 bytes.

PD_NAME File Name

2-16 0S-9 Technical I/O Manual

Random Block File Manager RBF Path Descriptor Definitions

NOTE: In the following chart, the term offset refers to the location of a path descriptor field relative to
the starting address of the path descriptor. Path descriptor offsets are resolved in assembly code by using
the names shown here and linking with the relocatable library: sys.l or usr.l.

Offset Name Description

$80 PD_DTP Device Class

$81 PD DRV Drive Number

$82 PD_STP Step Rate

$83 PD_TYP Device Type

$84 PD_DNS Density

$85 Reserved

$86 PD_CYL Number of Cylinders

$88 PD_SID Number of Heads/Sides

$89 PD_VFY Disk Write Verification

$8A PD_SCT Default Sectors/Track

$8C PD_TOS Default Sectors/Track 0

$8E PD_SAS Segment Allocation Size

$90 PD_ILV Sector Interleave Factor

$91 PD _TFM DMA Transfer Mode

$92 PD_TOffs Track Base Offset

$93 PD_SOffs Sector Base Offset

$94 PD_SSize Sector Size (in bytes)

$96 PD_Cntl Control Word

$98 PD_Trys Number of Tries

$99 PD_LUN SCSI Unit Number of Drive
$9A PD_WPC Cylinder to Begin Write Precompensation
$9C PD_RWR Cylinder to Begin Reduced Write Current
$OE PD_Park Cylinder to Park Disk Head
$A0 PD_LSNOffs Logical Sector Offset

$A4 PD_TotCyls Number of Cylinders On Device
$A6 PD_CtrlrID SCSI Controller ID

$AT PD_Rate Data Transfer/Rotational Rates

$A8 PD_ScsiOpt SCSI Driver Option Flag
$AC PD_MaxCnt Maximum Transfer Count

$BO Reserved
$B5 PD_ATT File Attributes
Offset Name Description

0S-9 Technical I/O Manual 2-17

RBF Path Descriptor Definitions

Random Block File Manager

$B6
$BA
$BE
$C2
$C6
$C8
$CC
$EO

PD_FD

PD_DFD
PD_DCP
PD_DVT

PD_SctSiz

PD_NAME

File Descriptor

Directory File Descriptor
File’s Directory Entry Pointer
Device Table Pointer (copy)
Reserved

Logical Sector Size

Reserved

File Name

2-18

0S-9 Technical I/O Manual

Random Block File Manager RBF Device Drivers

RBF Device Drivers

RBF reads and writes in logical blocks, called sectors. A logical sector can be any integral binary power
from 256 to 32768. The file manager takes care of all file system processing and passes the driver a
starting logical sector number (LSN), a sector count, and the address of the data buffer for each read or
write operation.

The logical sector size of the media is determined by RBF when a path is opened to the device. RBF
queries the driver to determine whether the driver can support variable sector sizes or not, using the
SS_VarSect GetStat call.

If the driver supports variable sector size, RBF assumes that the logical and physical sector sizes are the
same, with the size that is specified in PD_SSize.

If the driver does not support variable sector sizes, RBF assumes a logical sector size of 256 bytes, and
ignores the value in PD_SSize. If the media physical sector size is not 256 bytes, it is the driver’s
responsibility to translate and deblock RBF LSNs into the media’s LSNs. For example, if PD_SSize is
setto 512, and a read request of eight sectors at LSN four is made, the driver should translate the operation
into a read of four sectors at LSNtwo.

Read and write calls to the driver initiate the sector read/write operations and, if required, a prior seek
operation.

If the controller cannot be interrupt-driven, it must wait until the media is ready, and then transfer the data
by polling. If possible, avoid disk controllers that cannot be interrupt-driven. They cause the driver to
dominate the system CPU while disk /O is in progress.

For interrupt-driven systems, the driver initiates the I/O operation and suspends itself (F$Sleep or
F$Event) until the interrupt arrives. The interrupt service routine then services the interrupt and “wakes
up” the driver.

NOTE: If the driver is awakened by a signal (for example, a keyboard abort) while waiting for the 1/0
interrupt to occur, it should suspend itself again until the 1/0 interrupt has occurred. This is because many
read/write calls to a driver are made by RBF on behalf of itself, such as in directory searching or bitmap
updating. If a signal causes a process to terminate, RBF determines the appropriate time to return to the
kernel. Failure to enforce the 1/O interrupt completion may result in “locked” disks or corrupted media.

If DMA (Direct Memory Access) hardware support is available, 1/0 performance increases dramatically
because the driver will not have to move the data between memory and the controller.

0S-9 Technical I/O Manual 2-19

RBF Device Drivers Random Block File Manager

When the driver reads sector zero, it should copy the first 21 bytes of the sector into the drive table
(PD_DTB) associated with the logical unit. Sector zero of the disk media has format information recorded
by the format utility. This information allows the driver to determine the actual format of the media and
to compare the device physical capabilities specified in the path descriptor options with the media format.
This allows the driver to adapt its operation for reading and writing multiple formats in one physical drive.
For example, a floppy drive that can read/write double-sided, double-density disks can be made to operate
with single-sided or single-density media.

RBF always reads sector zero of the media when a file is opened. Many RBF drivers provide caching of
sector zero to improve the performance of 1$Open calls by RBF. This function is generally associated
with media that is non-removable (for example, fixed hard disks). When a hard disk driver reads sector
zero, it updates the drive table and copies the full sector zero into a local buffer. The state of the buffered
sector for the unit is recorded in the logical unit drive table variables V_ZeroRd and V_ScZero. This
enables the driver to return sector zero data on subsequent calls by RBF without accessing the disk.
Removable media should not have sector zero buffered unless the driver is capable of automatically
detecting the media removal (by an interrupt) and marking sector 0 unbuffered.

GetStat calls to RBF devices are generally processed by RBF itself, and thus are not normally seen by the
driver. The main exception is the SS_VarSect call, which RBF uses to inquire about the driver’s ability
to support non-256-byte logical sectors.

The INIT and TERM routines of RBF drivers are called directly by the kernel when the device is attached
and detached. Typically, the INIT routine only performs controller-specific initialization such as adding
the controller to the IRQ polling table, setting default values in the drive tables, and initializing the
controller hardware interface.

NOTE: The INIT routine generally does not perform initialization of the logical units attached to the
controller, for example, disk parameter definitions for SCSI drives. This type of initialization should
normally be done when the first Read/Write/GetStat/SetStat call is made to the unit.

The TERM routine typically disables the device’s interrupts, if required, and removes the controller from
the IRQ polling table.

2-20 0S-9 Technical I/O Manual

Random Block File Manager Main Driver Types

Main Driver Types

The complexity of RBF drivers depends on the capabilities of the hardware involved. Simple hardware
controllers require more effort by the driver than do intelligent controllers. Generally RBF drivers fall into
three levels of complexity:

Simple Floppy Interfaces

These types of drivers perform all physical drive movement operations explicitly: seek head,
wait for head settle delay, etc. They translate the RBF LSN into a track/head/sector, select the
drive, move the disk head to the required position, and then issue the 1/0 command. If multiple
drives are connected to the controller, the driver often has to maintain a record of the current
head position of each drive.

Combined Hard/Floppy Interfaces

These types of drivers deal with “medium” intelligence controllers. Typically, the physical
drive selection and automatic seeking are handled by the controller itself. The driver becomes
somewhat simpler because it must only translate the RBF LSN into a track/head/sector value.
The addition of hard disk operation to the driver adds some minor complexity to the driver due
to the differences in floppy vs. hard disk operation.

Intelligent Controllers

These types of drivers are typically used with SCSI or similar style controllers. These
controllers usually accept only a command “packet” indicating the operation required and the
address of the operation. These drivers are similar to “medium” intelligence controllers, with
the exception that the RBF LSN is usually accepted directly by the controller as the physical
sector number.

0S-9 Technical I/O Manual 2-21

RBF Device Driver Storage Definitions Random Block File Manager

RBF Device Driver Storage Definitions

RBF device driver modules contain a package of subroutines that perform sector-oriented 1/0O to or from
a specific hardware controller. Because these modules are re-entrant, one copy of the module can
simultaneously run several identical 1/O controllers.

The kernel allocates a static storage area for each device (which may control several drives). The size of
the storage area is specified in the device driver module header (M$Mem). Some of this storage area is
required by the kernel and RBF; the device driver may use the remainder in any manner. Information on
device driver static storage required by the operating system can be found in the rbfstat.a and drvstat.a
DEFS files. Static storage is used as follows:

Offset Name Maintained By Description

$00 V_PORT Kernel Device base port address
$04 V_LPRC File Manager Last active process ID
$06 V_BUSY File Manager Current active process
$08 V_WAKE Driver Process ID to awaken
$0A V_PATHS Kernel Linked List of Open Paths
$2E V_NDRV Driver Number of Drives

$2F Reserved

$36 DRVBEG Driver/File Man. Drive Tables

NOTE: Offset refers to the location of a field, relative to the starting address of the static storage. Offsets
are resolved in assembly code by using the names shown here and linking with the relocatable library:
sys.l.

2-22 0S-9 Technical I/O Manual

Random Block File Manager RBF Device Driver Storage Definitions

Name Description

V_PORT Device base port address
The device’s physical port address. It is copied from M$Port in the device descriptor
when the device is attached by the kernel.

V_LPRC Last active process ID
The process ID of the most recent process to use the device. This field is required by
the kernel for all device driver static storage, but is not used by RBF.

V_BUSY Current active process
The process ID of the process currently using the device. It is used to implement 1/0
Blocking by RBF. This field is also used by the interrupt drivers when they wish to
suspend themselves, by copying V_BUSY to V_WAKE (prior to suspending
themselves). A value of zero indicates the device is not busy.

V_WAKE Process ID to awaken
The process ID of any process that is waiting for the device to complete 1/0. A value
of zero indicates that no process is waiting. V_WAKE is set by the driver from
V_BUSY and provides the interlock between the driver and the driver’s interrupt
service routine.

V_PATHS Linked List of Open Paths
This is a singly-linked list of all paths currently open on this device.

V_NDRV Number of drives
This field is set by the driver’s INIT routine to indicate the maximum number of logical
drives the driver can use. RBF validates the logical drive number of the drive
(PD_DRYV) against this number prior to setting the drive table pointer (PD_DTB).
PD_ DRV must be less than V_NDRV.

V_DRVBEG Drive Tables

This section contains one table for each drive that the controller will handle. The drive
table associated with the drive is indicated by the drive table pointer (PD_DTB) in the
path descriptor.

0S-9 Technical I/O Manual 2-23

Device Driver Tables Random Block File Manager

Device Driver Tables

After the driver’s INIT routine has been called, RBF requests the driver to read the identification sector
(LSN 0) from the drive. After reading sector zero, the driver must initialize the corresponding drive table.
It does this by copying the number of bytes specified by DD_SIZ (21) from the beginning of sector 0 into
the appropriate table (PD_DTB). The following is the format of each drive table:

Offset Name Maintained By Description

$00 DD_TOT Sector 0 Total Number of Sectors

$03 DD_TKS Sector 0 Track Size (in sectors)

$04 DD_MAP Sector 0 Number of Bytes in Allocation Map
$06 DD_BIT Sector 0 Number of Sectors/Bit (cluster size)
$08 DD_DIR Sector 0 LSN of Root Directory FD

$0B DD_OWN Sector 0 Owner ID

$0D DD _ATT Sector 0 Attributes

$0E DD _DSK Sector 0 Disk ID

$10 DD_FMT Sector 0 Disk Format: Density/Sides

$11 DD_SPT Sector 0 Sectors/Track

$13 DD_RES Reserved

$16 V_TRAK Driver Current Track Number

$18 V_FileHd File Manager Open File List for Disk

$1C V_DiskID File Manager Disk ID

$1E V_BMapSz File Manager Bitmap Size

$20 V_MapSct File Manager Lowest Bitmap Sector to Search
$22 V_BMB File Manager Bitmap In Use Flag

$24 V_ScZero Driver Pointer to Sector 0

$28 V_ZeroRd Driver Sector 0 Read Flag

$29 V_Init Driver Drive Initialized Flag

$2A V_Resbit File Manager Reserved Bitmap Sector Number
$2C V_SoftEr Driver Number of Recoverable Errors

$30 V_HardEr Driver Number of Non-Recoverable Errors
$34 V_Cache Cache Utility Drive Cache Queue Head

$38 V_DText Driver Drive Table Extension pointer

$3A V_MapMax File Manager Maximum Bitmap Sector Number
$3C Reserved (22 bytes)

NOTE: There must be as many tables as are specified in V_NDRV. All references to Sector 0 in the
Maintained By column mean that this field is initialized by the driver with information obtained from
Sector 0 when it is first read.

2-24

0S-9 Technical I/O Manual

Random Block File Manager Device Driver Tables

Name

Description

DD_TOT

DD_TKS

DD_MAP

DD_BIT

DD _DIR

DD_OWN

DD_ATT

DD_DSK

DD_FMT

Total Number of Sectors

Contains the size of the media in sectors. RBF uses this field to set the size of the “raw”
device file (“@” file opens). The driver can also use this value to verify that the LSN
passed by RBF is in range for the media. Driver INIT routines typically initialize this
field in the drive table to a non-zero value, so that sector 0 may be read initially.

Track Size (in sectors)
Contains the number of sectors per track, as a byte value.

Number of Bytes in Allocation Map
Contains the size of the media bitmap.

Number of Sectors/Bit (cluster size)
Contains the size of a cluster of sectors on the disk. This value is always an integral
power of two.

LSN of Root Directory FD
Contains a pointer to the file descriptor of the media’s root directory.

Owner ID
The user ID of the disk owner.

Attributes
Defines the access attributes of the media.

Disk ID
Contains a pseudo-random number which identifies the media volume. This number is
put here by the format utility.

Disk Format: Density/Sides
Defines the format of the media volume, to enable drivers to adapt to different formats:

bit0: 0= Single-sided
= Double-sided
bit1: 0= Single-density (FM)
1= Double-density (MFM)
bit2: 1= Double-track density (96 TP1/135 TPI)
bit3: 1= Quad track density (192 TPI)
bit4: 1= Octal track density (384 TPI)

0S-9 Technical I/O Manual 2-25

Device Driver Tables

Random Block File Manager

Name Description

DD_SPT Sectors/Track
A two byte value of DD_TKS.

V_TRAK Current Track Number
This value is used to record the current track number of a logical unit for those drivers
that need to perform seek functions explicitly. Typically, driver INIT routines initialize
this field to an unknown track number (for example, $FF), so that the first access to the
drive results in a restore operation.

V_FileHd Open File List for Disk
A pointer to the list of all files open on the logical unit.

V_DiskID Disk ID
A copy of DD_DSK.

V_BMapSz Bitmap Size
The size of the media’s bitmap.

V_MapSct Lowest Bitmap Sector to Search
The starting sector number to begin bitmap allocation functions.

V_BMB Bitmap In Use Flag
Indicates whether or not the bitmap is in use.

V_ScZero Pointer to Sector 0
A pointer to a buffered sector zero for the unit. This is only used by drivers that perform
this function.

V_ZeroRd Sector 0 Read Flag
Used by the driver to indicate whether or not the buffered sector zero is valid. If the
data is valid, this flag should be non-zero.

V_Init Drive Initialized Flag
Used by the driver to indicate whether or not the logical unit has been initialized. If the
unit has been initialized, this field should be non-zero.

V_Resbit Reserved Bitmap Sector Number

Indicates the bitmap sector number to ignore during RBF bitmap allocation functions.
It is set by the SS_RsBit SetStat call.

2-26

0S-9 Technical I/O Manual

Random Block File Manager Device Driver Tables

Name

Description

V_SoftEr

V_HardEr

V_Cache

V_DTExt

V_MapMax

Number of Recoverable Errors

Allows the driver to keep a count of “soft” errors during 1/O operations. The value is
typically returned by a SS_ELog GetStat call. After reading this value, it is typically
reset to zero.

Number of Non-Recoverable Errors

Allows the driver to keep a count of “hard” errors during 1/O operations. The value
would typically be returned by a SS_ELog GetStat call. After reading this value, it
is typically reset to zero.

Drive Cache Queue Head
A pointer to the cache queue for the drive.

Drive Table Extension Pointer
A pointer to an extension of the drive table. Drivers that require storage of additional
drive table variables can use this field as a pointer to the extra information.

Maximum Bitmap Sector Number
The sector number of the last sector of the bitmap.

0S-9 Technical I/O Manual 2-27

Linking RBF Drivers Random Block File Manager

Linking RBF Drivers

After a RBF driver has been assembled into its relocatable object file (ROF), the driver needs to be linked
to produce the final driver module. Linking resolves all code references in drivers that are comprised of
several ROF files. It also resolves the external data and static storage references by the driver.

The most important part of linking is to correctly resolve the static storage references. Generally, the static
storage area is composed of three sections in this order (see Figure 2-1):

I/0 globals
| Drive tables (one per logical drive)

/E Driver-declared variables

The driver-declared variables are declared in vsect areas of the driver, but they must be allocated after the
drive table storage areas. The method that you must use to allocate all of the storage, in the correct order,
is to link one of the drvsX.l library files before the user written ROF files. The drvsX.l files are usually
found in the system’s LIB directory. Each drvsX.l file contains vsect declarations that allocate the 1/0
system variables and the appropriate number of drive tables. For example, drvsl.l allocates the 1/O
system-defined section and one drive table, while drvs4.l allocates the 1/0O system-defined section and four
drive tables. The following is a typical linker command line for an RBF driver:

168 /dd/L1B/drvs4.l REL/rb320.r -O=0BJS/rb320

NOTE: Specifying the drvsX.l file first causes the vsect variables declared by the file to be allocated
before the vsect variables in the ROF file. Failure to correctly allocate the 1/0O system and drive table
variables first, or failure to link the correct number of drive tables at all, results in erratic driver operation.

2-28 0S-9 Technical I/O Manual

Random Block File Manager

RBF Static Storage Layout

High Memory +

Low Memory +

DEFS File LIB File
Driver-declared N/A N/A
Storage (vsect)
A
RBF Drive Tables
(‘'n’ copies, wheren is drvstat.a
the maximum number
of drives)
drvsX.l
(where X=n)
RBF I/O Globals rbfdev.a (rbfstat.a)
Kernel 1/0 Globals iodev.a (rbfstat.a)
\l

Figure 2-1: RBF Static Storage Layout

0S-9 Technical I/O Manual

2-29

RBF Device Driver Subroutines Random Block File Manager

RBF Device Driver Subroutines

As with all device drivers, RBF device drivers use a standard executable memory module format with a
module type of Drivr (code $E0). RBF drivers are called in system state.

NOTE: 1/0 system modules must have the following module attributes:

* They must be owned by a super-user (0.n).

» They must have the system-state bit set in the attribute byte of the module header. (OS-9 does
not currently make use of this, but future revisions will require that 1/0 system modules be
system-state modules.)

The execution offset address in the module header points to a branch table that has seven entries. Each
entry is the offset of a corresponding subroutine. The branch table appears as follows:

ENTRY dc.w INIT initialize device
dc.w READ read character
dc.w WRITE write character
dc.w GETSTAT get device status
dc.w SETSTAT set device status
dc.w TERM terminate device
dc.w TRAP handle illegal exception (0 = none)

Each subroutine should exit with the carry bit of the condition code register cleared, if no error occurred.
Otherwise, the carry bit should be set and an appropriate error code returned in the least significant word
of register d1.w.

The TRAP entry point is currently not used by the kernel, but in the future will be defined as the offset to
error exception handling code. Because no handler mechanism is currently defined, this entry point should
be set to zero to ensure future compatibility.

The following pages describe each subroutine.

2-30 0S-9 Technical I/O Manual

Random Block File Manager INIT

INIT Initialize Device and its Static Storage Area

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(al) = address of the device descriptor module
(a2) = address of device static storage

(ad) = process descriptor pointer

(a6) = system global data pointer

None

cc = carry bit set
dl.w = error code

The INIT routine must:

Initialize the device’s permanent storage. Minimally, this consists of:

* Initializing V_NDRYV to the number of drives with which the controller will
work.

* Initializing DD_TOT in each drive table to a non-zero value so that sector
zero may be read or written to.

 If the driver must perform explicit seeks, initializing V_TRAK to $FF so
that the first seek will find track zero.

Place the IRQ service routine on the IRQ polling list by using the FSIRQ system
call.

/ Initialize device control registers (enable interrupts if necessary).

Prior to being called, the device static storage is cleared (set to zero), except for
V_PORT which contains the device address. The driver should initialize each drive
table entry appropriately for the type of disk the driver expects to be used on the
corresponding drive.

If INIT returns an error, it does not have to clean up its operation, for example, remove
device from polling table or disable hardware. The kernel calls TERM to allow the
driver to clean up INIT’s operation before returning to the calling process.

Usually, the INIT routine should only perform controller-specific initialization, as op-
posed to drive-specific initialization. This is because the controller may have more than
one type of drive connected to it.

0S-9 Technical I/O Manual 2-31

INIT Random Block File Manager

NOTE: Ifthe INIT routine causes an interrupt to occur, you can handle the interrupt in
one of the following ways:

» Process the interrupt directly by masking interrupts to the level of the device,
polling/servicing the device hardware, and then restoring the previous interrupt
level. This is the preferred technique unless the interrupt is time-consuming.

» Allow the interrupt service routine to service the hardware. In this case, the
process descriptor contains the process ID (P$ID) to which V_WAKE should
be set. V_BUSY cannot be used because it is zero when INIT is called.

2-32 0S-9 Technical I/O Manual

Random Block File Manager READ

READ Read Sector(s)

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

d0.l = number of contiguous sectors to read
d2.1 = disk logical sector number to read
(al) = address of path descriptor

(a2) = address of device static storage

(ad) = process descriptor pointer

(ab) = caller’s register stack pointer

(a6) = system global data storage pointer

Sector(s) returned in the sector buffer

cc = carry bit set
d1l.w =error code

The READ routine must perform the following operations:

I+

Locate the associated drive table (PD_DTB) and determine if it is initialized.
If not, perform any drive initialization required and mark the drive initialized in
the drive table. If the driver will perform sector zero buffering for the unit,
allocate a sector zero buffer.

Verify the starting LSN and ending LSN (if a multi-sector read) against the size
of the media (DD_TOT).

Compute the physical disk address (track/head/sector) from the LSN, if
required.

If the driver supports sector 0 buffering, and the read request is for sector 0,
return the sector O data to the buffer specified. If no further sectors are
requested, return to RBF. Otherwise, proceed to read the remaining sectors into
the remainder of the buffer.

For drivers that perform explicit seeking, seek to the desired track. If the seek
involves the selection of a drive different from the last one selected, this may
also require that you save the current track position in the last selected drive’s
drive table (V_TRAK).

Prepare the hardware for the read request and start the 1/0 operation. The data
should be read into the buffer specified by PD_BUF.

Wait for the 1/0 operation to complete (with interrupts, if possible).

0S-9 Technical I/O Manual

2-33

READ

Random Block File Manager

(@)

If the starting LSN of the read was not LSN 0, return to RBF. Otherwise:

a) Update the unit’s drive table by copying the number of bytes specified by
DD_SIZ (21) from the beginning of sector 0 into the appropriate table.

b) If the driver supports buffering sector zero for the unit, copy sector zero into
the driver’s local buffer (V_ScZero) and mark the buffer valid
(V_ZeroRd).

¥ If the logical unit and driver support multiple disk formats, the driver should
validate that the media is readable by the drive. If not, the driver should return
a Bad Type error (E$BTyp). If it can, the driver should ready itself for the new
format by either:

a) Marking the logical unit as uninitialized (V_Init cleared), so the next access
will cause the unit to be re-initialized by the driver.

b) Re-initializing the unit hardware for the new format.
KU Return the status of the read to RBF.
Sector/Transfer Count

The number of sectors to transfer is passed by RBF. If bit number one in PD_Cntl is
clear, RBF always requests only one sector. If the bit is set, RBF requests a maximum
count, based on the value in PD_MaxCnt. The value in PD_MaxCnt is truncated to
an exact sector count, so that the device always sees requests in terms of an integral
number of sectors.

Sector Zero Reads

Whenever logical sector zero is read from the media, the first part of it must be copied
into the drive table for the logical unit. PD_DTB contains the pointer to the drive table.
The number of bytes to copy is DD_SIZ.

Drivers that buffer sector zero also update their local copy when sector zero is read from
the media. The drive table variables V_ScZero (pointer to sector zero) and V_ZeroRd
(sector zero valid flag) allow the driver to maintain this buffer. When the driver
receives a read request for LSN zero, it can check these flags. If the buffer is valid, it
can simply return the buffered data to RBF without performing any disk 1/O.

Sector zero buffering should normally be performed only on fixed media (fixed hard
disks). This ensures that media volume changes are noticed by RBF. Failure to detect
media changes correctly can result in corruption of the new volume.

If the driver can detect media removal (for example, via an interrupt when the door is
opened), it is permissable for the driver to buffer sector 0 while the media is installed.

2-34

0S-9 Technical I/O Manual

Random Block File Manager READ

Sector Size Support

If the driver supports variable sector sizes, RBF assumes that the size of a sector is
specified by PD_SSize, and that the logical and physical sector sizes are the same.
Drivers operating under this mode simply process the RBF transfer count and LSN
address according to the disk’s requirements.

If the driver does not support variable sector sizes (logical sector size is 256 bytes) and
the physical sector size of the media (PD_SSize) is not 256 bytes, the driver must
deblock the media sectors. Typically, this involves the following steps:

Determine if RBF’s starting LSN falls at the start of a media physical sector. If
not, check if the physical sector is currently buffered by the driver. If the
physical sector is currently buffered by the driver, copy the appropriate part of
the buffer to RBF’s buffer. If not, read the physical sector into the driver’s
buffer and return the appropriate part to RBF’s buffer.

If any sectors remain to be read, convert the remaining start address and count
into the physical start address and count. Then, read (and count) those sectors
into the RBF buffer.

If any partial sector remains to be read, read that physical sector into the driver’s
physical buffer. Then, return the appropriate part of the buffer to the end of the
RBF buffer.

0S-9 Technical I/O Manual

2-35

READ Random Block File Manager

Interrupt-driven Operation

If the hardware uses interrupts to perform 1/O, the driver should perform the following
steps:
Synchronization using Signals
Issue the 1/0 command to the hardware.
Copy V_BUSY to V_WAKE in the static storage.
The driver should then suspend itself (F$Sleep).

Q &\

The IRQ service routine is called when the interrupt occurs. The IRQ
service routine checks that the interrupt occurred for its hardware, services
the interrupt, and sends a wake-up signal (S$Wake) to the driver. The
driver’s process ID is in V_WAKE. After sending the signal, the IRQ
service routine should clear V_WAKE to signify that the interrupt occurred.

x When the driver awakens, it should check V_WAKE. If zero, the interrupt
has occurred and the driver can continue to check status, etc. If non-zero,
the driver should suspend itself again.

Synchronization using Events
Issue the 1/0 command to the hardware.

! The driver should suspend itself using the event system’s “wait” function.

/A The IRQ service routine is called when the interrupt occurs. The IRQ
service routine checks that the interrupt occurred for its hardware, services
the interrupt, and then uses the event system’s “signal” function to awaken
the driver.

@ When the driver awakens, it should determine if the event value is within
range. If so, the interrupt was serviced and the driver can check the status,
etc. If not, the driver should suspend itself again.

2-36 0S-9 Technical I/O Manual

Random Block File Manager WRITE

Wizdl= Write Sector(s)

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

d0.l = number of contiguous sectors to write
d2.1 = disk logical sector number

(al) = address of the path descriptor

(a2) = address of the device static storage area
(ad) = process descriptor pointer

(ab) = caller’s register stack pointer

(a6) = system global data storage pointer

The sector buffer is written to disk.

cc = carry bit set
d1l.w =error code

The WRITE routine must perform the following operations:

I+

<

Determine the starting LSN. If zero, the driver should check the format control
flag for format protection (PD_Cntl, bit 0). If bit O is clear, the media can be
formatted and sector 0 may be written. If bit O is set, the media is format
protected and the driver should return an E$Format error.

Locate the associated drive table (PD_DTB) and check if the unit is initialized
(V_Init). If not, perform any drive initialization required and mark the drive
initialized in the drive table.

If the driver supports buffering of sector 0 for the unit, and sector 0 is being
written, the driver should clear V_ZeroRd to mark that sector 0 is unbuffered.

Verify the starting LSN (and ending LSN, if a multi-sector write) against the
size of the media (DD_TOT).

Compute the physical disk address (track/head/sector) from the LSN, if
required.

For drivers that perform explicit seeking, seek to the desired track. If the seek
involves the selection of a drive different from the last one selected, this may
also require you to save the current track position in the last selected drive’s
drive table (V_TRAK).

Prepare the hardware for the write request and start the 1/0 operation. The data
should be written from the buffer specified by PD_BUF.

Wait for the 1/0O operation to complete (with interrupts, if possible).
Return the status of the write to RBF.

Sector/Transfer Count

0S-9 Technical I/O Manual

2-37

WRITE

Random Block File Manager

The number of sectors to transfer is passed by RBF. If bit number one in PD_Cntl is
clear, RBF always requests only one sector. If the bit is set, RBF requests a maximum
count, based on the value in PD_MaxCnt. The value in PD_MaxCnt is truncated to
an exact sector count, so that the device always sees requests in terms of an integral
number of sectors.

Sector Zero Writes

Whenever the starting LSN is zero, the driver should check whether the media may be
formatted (PD_Chntl, bit 0). If bit O is set, the media is format protected and sector zero
may not be written. The driver should return a E$Format (format protected) error in
this case.

If the driver buffers sector zero of the media, it should clear V_ZeroRd to mark the
buffer invalid. This ensures that the next read of sector zero will access the media.

Sector Size Support

If the driver supports variable sector sizes, RBF assumes that the size of a sector is
specified by PD_SSize, and that the logical and physical sector sizes are the same.
Drivers operating under this mode simply process the RBF transfer count and LSN
address according to the disk’s requirements.

If the driver does not support variable sector sizes (logical sector size is 256 bytes) and
the physical sector size of the media (PD_SSize) is not 256 bytes, the driver must
deblock the media sectors. Typically, this involves the following steps:

Determine if RBF’s starting LSN falls at the start of a media physical sector. If
not, and the physical sector is not currently cached, read the physical sector into
the driver’s local buffer. Update the appropriate part of the buffer with RBF’s
data and write the local buffer to the media.

| If any sectors remain to be written, convert the remaining start address and
count into the physical start address and count. Then, write (and count) those
sectors from the RBF buffer.

/ If any partial sector remains to be written, read that physical sector into the
driver’s local buffer. Next, update the appropriate part of the buffer with RBF’s
data and write the local buffer to the media.

2-38

0S-9 Technical I/O Manual

Random Block File Manager

WRITE

Interrupt Operation

If the hardware uses interrupts to perform 1/O, the driver should perform the following

steps:

Synchronization using Signals

Q &\

Issue the 1/0 command to the hardware.
Copy V_BUSY to V_WAKE in the static storage.
The driver should suspend itself (F$Sleep).

The IRQ service routine is called when the interrupt occurs. The IRQ
service routine checks that the interrupt occurred for its hardware, services
the interrupt, and sends a wake-up signal (S$Wake) to the driver. The
driver’s process ID is in V_WAKE. After sending the signal, the IRQ
service routine should clear V_WAKE to signify that the interrupt occurred.

When the driver awakens, it should check V_WAKE. If zero, the interrupt
has occurred and the driver can continue to check status, etc. If non-zero,
the driver should suspend itself again.

Synchronization using Events

Issue the I/0O command to the hardware.
The driver should suspend itself using the event system’s “wait” function.

The IRQ service routine is called when the interrupt occurs. The IRQ
service routine checks that the interrupt occurred for its hardware, services
the interrupt, and then uses the event system’s “signal” function to awaken
the driver.

When the driver awakens, it should check that the event value is within
range. If so, the interrupt was serviced and the driver can check the status,
etc. If not, the driver should suspend itself again.

0S-9 Technical I/O Manual

2-39

GETSTAT/SETSTAT Random Block File Manager

GETSTAT/SETSTAT Get/Set Device Status

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

d0.w = status code

(al) = address of the path descriptor

(a2) = address of the device static storage area
(ad) = process descriptor pointer

(ab) = caller’s register stack pointer

(a6) = system global data storage pointer

Depends on the function code

cc = carry bit set
d1l.w =error code

These routines are wild-card calls used to get/set the device’s operating parameters as
specified for the 1$GetStt and 1$SetStt service requests.

Calls which involve parameter passing require the driver to examine or change the
register stack variables. These variables contain the contents of the MPU registers at
the time of the 1$Getstt/I$SetStt request was made. Parameters passed to the driver
are set up by the caller prior to using the service call. Parameters passed back to the
caller are available when the service call completes.

Typical RBF drivers handle the following I$GetStt/I$SetStt calls:
I$GetStt: SS DSize, SS_VarSect
|$Setstt: SS Reset, SS_SQD, SS_WTrk

Any unsupported 1$GetStt/I$SetStt calls to the driver should return an unknown
service error (E$UNKSvc).

NOTE: A minimal RBF driver should support SS_Reset and SS_WTrk, so that
media may be formatted.

The following pages describe the driver implementation of the above
I$GetStt/I$SetStt calls.

2-40

0S-9 Technical I/O Manual

Random Block File Manager

GETSTAT/SETSTAT

GetStat Call:

SS_DSize

This routine is used to return the media size for autosize devices
(PD_Cntl, bit three set). The routine must perform the following steps:

Locate the associated drive table (PD_DTB) and check whether
the unit is initialized (V_Init). If not, perform any drive
initialization required and mark the drive initialized in the drive
table.

Prepare the hardware for the request and start the 1/0O operation.

Wait for the 1/0O operation to complete (with interrupts, if
possible).

Return the media size (in terms of its logical sector size) to the
caller’s d2 register (R$d2 offset from passed a5). Note that if
the driver supports deblocking (logical and physical sizes are not
the same), the returned sector count should be a “logical” sector
count.

Return status to RBF.

SS VarSect This routine is called by RBF whenever a path is opened to the device,
so that RBF can determine the logical sector size of the media. The
driver should indicate its support for variable logical sector sizes as
follows:

If variable logical sector sizes are supported , the driver should
return a “no error” status. Upon return to RBF, RBF uses the
value in PD_SSize as the media’s logical sector size. It is
permissable for the driver to query the drive for its current sector
size setting and update PD_SSize during this call.

0S-9 Technical I/O Manual

2-41

GETSTAT/SETSTAT Random Block File Manager

WARNING: Querying the drive does not mean issuing a
physical read of the disk’s sector 0 (to read DD_LSNSize) as
RBF has not yet set up the buffer pointers for the path (PD_BUF
= 0). Unless you take special care, attempting to perform
physical data 1/O at this point will probably crash the system.
The only type of 1/0O operations valid at this point are generally
internal driver operations (for example, Mode Sense command
to a SCSI drive). Drivers that deal with media that cannot return
“current sector size” generally require that PD_SSize be set
correctly in the device descriptor. The driver returns “no error”
to indicate that RBF can use PD_SSize as the logical media
size.

» If the driver does not support variable logical sector sizes, it
should return an “unknown service request” (E$UnkSvc) error,
to indicate to RBF that the logical sector size of the media is 256
bytes and that PD_SSize should be ignored.

» If the driver returns any error other than “unknown service
request”, RBF aborts the path open operation and returns the
error to the caller.

SetStat Calls:

SS Reset Recallibrate (restore) the media head to the outer track. This is mainly
used by format to ensure the media is at a known position.

The restore routine must perform the following functions:

¢ Locate the associated drive table (PD_DTB) and check whether
the unit is initialized (V_Init). If not, perform any drive
initialization required and mark the drive initialized in the drive
table.

i Prepare the hardware for the request and start the 1/O operation.

- Wait for the 1/O operation to complete (with interrupts, if
possible).

P Return the status of the restore to RBF.

SS_SQD This is mainly used to move (park) the heads of hard disk drives to a safe
area. The park routine must perform the following steps:

Check whether the media may be parked. This typically
involves the following:

2-42 0S-9 Technical I/O Manual

Random Block File Manager

GETSTAT/SETSTAT

SS_WTrk

f

» Check if the device is a floppy disk. If so, return an
E$UnkSvc error.

* Check the PD_Park value. If it is zero or within the range
of the RBF media area, return an E$UnkSvc error.

Locate the associated drive table (PD_DTB) and initialize the
drive according to the parking function. This typically involves
setting the drive’s cylinder count to the PD_Park value. After
initialization, do not mark the drive initialized (V_Init should be
clear). This ensures that any subsequent accesses to the drive
will cause the drive to be re-initialized correctly (PD_CYL or
PD_TotCyls count instead of PD_Park).

Prepare the hardware for the park request and start the 1/0
operation.

Wait for the 1/0O operation to complete (with interrupts, if
possible).

Return the status of the park to RBF.

The park operation typically consists of issuing a seek or read command
and specifying a sector address on the desired cylinder. On some
drives/controllers, this may fail because the parking cylinder is not
formatted and the controller attempts to verify the seek/read. In these
situations, it is typical for the driver to perform a write track operation
on the desired track.

This is used by format to perform physical initialization of the media.
The write track routine must perform the following steps:

Check whether the media may be formatted (PD_Cntl, bit O
clear). If not, the media is format protected and the driver should
return an E$Format error.

Locate the associated drive table (PD_DTB) and check whether
the unit is initialized (V_Init). If not, perform the required drive
initialization and mark the drive initialized in the drive table. If
the driver supports buffering sector 0 for the unit, and the track
being formatted is the first track of the media (PD_TOffs), the
driver should clear V_ZeroRd to mark that sector 0 is
unbuffered.

0S-9 Technical I/O Manual

2-43

GETSTAT/SETSTAT Random Block File Manager

= If the driver supports any buffering of physical sectors (non
“VarSect” driver with physical sectors not equal to 256 bytes),
it should mark any active buffers as invalid.

D For drivers that perform explicit seeking, seek to the desired
track. If the seek involves the selection of a drive different from
the last one selected, this may also require the current track
position to be saved in the last selected drive’s drive table
(V_TRAK).

f Prepare the hardware for the write track request and start the 1/0
operation.

Y Wait for the 1/0 operation to complete (with interrupts, if
possible).

y Return the status of the write track to RBF.

The method of formatting disk drives varies with the hardware in use.
However, note the following points:

The parameters passed are physical parameters, with one
exception: the sector interleave table. If the driver must pass the
interleave table to the hardware (or prepare its own table), it
must add the PD_SOffs value to each interleave table entry so
that a physical interleave table is passed to the hardware.

! The driver typically only initializes the drive when the track
number passed is equal to the PD_TOffs value (that is, at the
beginning of the format operation).

/£ SS_WTrk calls to the driver issued by format are dependent on
the autosize flag in PD_Cntl (bit three) in the following manner:

» Ifthe media is autosize capable (bit three set), format makes
only one SS_WTrk call to the driver with the passed track
number being equal to PD_TOffs. The driver is expected to
format the entire media from this call.

» If the media is non-autosize capable (bit three clear), format
issues a SS _WTrk call for each track on the media
(PD_CYLS x PD_SID). The driver is expected to format
the media one track at a time. If the hardware cannot handle
individual tracks, the driver must perform a format all media
operation on the first SS_WTrk call (PD_TOffs equal to the
passed track number and side number zero) and simply
ignore all other SS_WTrk calls without returning an error.

2-44 0S-9 Technical I/O Manual

Random Block File Manager TERM

TERM Terminate Device

INPUT: (al) = address of the device descriptor module
(a2) = address of device static storage area
(a6) = system global static storage pointer

OUTPUT: None

ERROR cc=carry bit set
OUTPUT: dl.w=error code

FUNCTION: Thisroutine is called when a device is no longer in use in the system (see I$Detach).
The TERM routine must:
Wait until any pending 1/O has completed.
| Disable the device interrupts.

Remove the device from the IRQ polling list.

ST

Return any buffers the driver has requested on behalf of itself, for example,
sector zero buffers or physical sector deblocking buffers.

NOTE: The driver should not attempt to return buffers within its defined static
storage area. The kernel releases this memory when the TERM routine
completes.

NOTE: Ifan error occurs during the device’s INIT routine, the kernel calls the TERM
routine to allow the driver to clean up. If the TERM routine uses static storage variables
(for example, interrupt mask values, dynamic buffer pointers), it should validate these
variables prior to using them. The INIT routine may not have set up all the variables
prior to exiting with the error.

0S-9 Technical I/O Manual 2-45

IRQ Service Routine Random Block File Manager

IRQ Service Routine Service Device Interrupts

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(a2) = static storage address
(a3) = port address
(a6) = system global static storage

None

cc = carry set (interrupt not serviced)

This routine is called directly by the kernel’s IRQ polling table routines. Its function is
to:

Check the device for a valid interrupt. If the device does not have an interrupt
pending, the carry bit must be set and the routine exited with an RTS instruction
as quickly as possible. Setting the carry bit signals the kernel that the next
device on the vector should have its IRQ service routine called.

! Service device interrupts.
/E Wake up the driver mainline, using the synchronization method of the driver:

Signals: Send a wake-up signal to the process whose process ID is in
V_WAKE, when the I/O is complete. Also, clear V_WAKE as
a flag to the mainline program that the IRQ has occurred.

Events: Signal the event that the IRQ has occurred, using the event
system’s signal function.

@ Clear the carry bit and exit with an RTS instruction after servicing an interrupt.

Avoid exception conditions (for example, a Bus Error) when IRQ service routines are
executing. Under the current version of the kernel, an exception in an IRQ service rou-
tine will crash the system.

NOTE: IRQ service routines may destroy the contents of the following registers only:
do, di, a0, a2, a3, and a6. You must preserve the contents of all other registers or
unpredictable system errors (system crashes) will occur.

End of Chapter 2

2-46

0S-9 Technical I/O Manual

Random Block File Manager IRQ Service Routine

0S-9 Technical I/O Manual 2-47

NOTES Random Block File Manager

NOTES

2-48 0S-9 Technical I/O Manual

Sequential Character
File Manager
(SCF)

SCF General Description

The Sequential Character File Manager (SCF) is a re-entrant subroutine package for 1/O service requests
to devices which operate on a character-by-character basis, such as terminals, printers, and modems. SCF
can handle any number or type of character-oriented devices. It includes some input and output editing
functions for line-oriented operations such as backspace, line delete, repeat line, auto line feed, screen
pause, and return delay padding.

The following 1/0 service requests are handled by SCF:

I$Close I$Create I$GetStt I$Open I$Read
ISReadLn I$SetStt I$Write I$Writln

The following 1/0 service requests are not valid for SCF:
I$ChgDir I$Delete I$SMakDir I$Seek

When an I$ChgDir, I$Delete, or ISMakDir is made to SCF, an appropriate error code is returned. 1$Seek
does not return an error.

The following 1/0 service requests do not call SCF:
I$Attach I$Detach I$Dup

SCF device drivers are responsible for the actual transfer of data between their own internal buffers and
the device hardware.

0S-9 Technical I/O Manual 3-1

SCF Line Editing Sequential Character File Manager

SCF transfers data to/from the driver in register d0. The driver typically operates as follows, depending
upon whether or not the driver uses interrupts:

Polled Mode

The WRITE routine writes the data to the hardware and the driver returns immediately. The
READ routine checks for available data, waits if there is no data, and returns the data when
ready. Polled-mode drivers usually do not buffer the data internally.

NOTE: Polled 1/0 operation can have a harmful effect on real-time system operation. Polled
I/0 is acceptable if the device is always ready to send or receive data (for example, output to a
memory-mapped video display). Polled 1/O is not acceptable if the driver has to wait for the
device to send or receive data.

Interrupt Mode

Interrupt-driven drivers typically use input FIFO and output FIFO buffers for the data being
read and written. The WRITE routine deposits the data in the output FIFO buffer, arms the
output interrupts (if necessary), and allows the device’s output interrupt service routine to
empty the output FIFO. When the output FIFO is empty, output interrupts are usually disabled.
The READ routine checks the input FIFO buffer. If data is available, READ takes the next
character from the buffer and returns. If no data is available, READ suspends itself until data
is available. The device’s input interrupt service routine is responsible for filling the input
FIFO and waking any waiting process. Input interrupts are usually enabled for the time that
the device is attached to the system.

SCF Line Editing

The I$Read and I$Write service requests to SCF devices pass data to/from the device without
modification; SCF does not add line feeds or NULLSs after writing a carriage return.

The I$ReadLn and I$Writln service requests to SCF devices perform all line editing functions enabled for
the particular device.

Line editing functions are initialized when a path is first opened by copying the option table from the de-
vice descriptor associated with that device into the path descriptor. They may be altered later by programs
using the I$GetStt and 1$SetStt (SS_Opt) service requests. You can use the xmode utility to modify
the option table of SCF device descriptors in writable memory, so that changes can be applied prior to
opening a path to the device. You can also use the tmode utility to modify the options from the keyboard.
Line editing functions are disabled when the option table field is set to zero.

CAVEAT: If software handshaking (X-ON/X-OFF) is enabled, these characters are intercepted by the
device driver and not processed by SCF.

3-2 0S-9 Technical I/O Manual

Sequential Character File Manager SCF I/O Service Requests

SCF I/O Service Requests

When a process makes one of the following system calls to a SCF device, SCF executes the file manager
functions described for that call.

I$Close SCF performs the following functions:

» Checks for additional paths open to the device by the calling process
If no additional paths are open, a SS_Relea SetStat is performed to release the
device signal conditions and disassociate the device signals from the process.

* Checks for any other users of the path
If there are none, SBF:

 Performs aSS_Close SetStat to the driver
* Performs an I$Detach if the device has an output (echo) device

* Returns buffers allocated by the original 1$Open call

I$Create SCF considers this system call synonymous with I$Open.

I$GetStt The SS_Opt GetStat function is supported by SCF. It is passed to the driver to enable the
driver to update hardware specific parameters such as the baud rate. If the driver returns
an E$UnkSvc error, it is ignored. All other GetStat calls are passed directly to the driver.

Refer to the I$GetStt system call description in the OS-9 Technical Manual for specific
information on the various SCF-oriented I$GetStt functions.

I$Open SCF performs the following functions:

* Validates the pathname

* Allocates memory for the “path buffer”

* Initializes the path descriptor with the default options section
* Performs an I$Attach if the device has an output (echo) device

* Calls the driver with an SS_Open SetStat
If the driver returns an ESUnkSvc error, SCF ignores it.

0S-9 Technical I/O Manual 3-3

SCF I/O Service Requests Sequential Character File Manager

I$Read

I$ReadLn

I$Read requests read input from the device without modifying the data. The read
terminates under any of these circumstances:

» The requested number of bytes has been read.
* Anend-of-record character is detected (PD_EOR).
* An end-of-file (PD_EOF) is detected as the first character of the read.

e An error occurs.
You have control over the method of transfer in the following ways:

» De-select (set to zero) the end-of-record (PD_EOR) character using I$GetStt
and 1$SetStt. This prevents the read from terminating early, due to PD_EOR
detection. The read continues until the requested number of characters has been
read.

» De-select (set to zero) the end-of-file (PD_EOF) character using I1$GetStt and
I$SetStt. This prevents the read from terminating when receiving an end-of-
file character as the first character of the read.

If the requested data is not immediately available, the driver waits (F$Sleep) for the data.
This will “busy” the driver (other processes 1/0 block) until the data READ request has
completed. If you do not wish a process to wait for data, use the SS_Ready GetStat or
SS SSig SetStat calls to detect when an I$SRead can be issued.

I$ReadLn requests read input from the device and may edit the data. The read terminates
under any of these circumstances:

* An end-of-record character is detected (PD_EOR).

* An end-of-file (PD_EOF) is detected as the first character of the read.

* An error occurs.
If the end-of record character is not encountered before the requested number of bytes has
been read, SCF echos the line overflow character (PD_OVF) for each subsequent character
read. This indicates that the characters are being ignored. This condition is maintained

until the end-of-record character is read. You have control over how the data stream is
edited by setting the path descriptor options using 1$GetStt and 1$SetStt.

NOTE: Never use I$ReadLn on a path that has its end-of-record (PD_EOR) function
disabled, as ISReadLn can then only terminate on an error or end-of-file condition.

3-4

0S-9 Technical I/O Manual

Sequential Character File Manager SCF I/O Service Requests

I$SetStt

I$Write

[$WritIn

The SS_Opt SetStat function is supported by SCF. After SCF updates the path descriptor
option section, it is passed to the driver to enable the driver to update hardware specific
parameters such as the baud rate. If the driver returns an ESUnkSvc error, SCF ignores it.
All other SetStat calls are passed directly to the driver.

Refer to the 1$SetStt system call description in the OS-9 Technical Manual for specific
information on the various SCF-oriented I$SetStt functions.

I$Write requests output data to the device without modifying the data being passed. The
write terminates only when all characters have been sent or an error occurs.

I$Writln is similar to I$Write except that I$Writin writes data until an end-of-record char-
acter (PD_EOR) is written or until the specified number of bytes has been sent. The line
editing that I$WritIn performs for SCF devices consists of auto line feed, null byte padding
at end-of-record, tabulation, and auto page pause.

0S-9 Technical I/O Manual 3-5

SCF Device Descriptor Modules Sequential Character File Manager

SCF Device Descriptor Modules

This section describes the definitions of the initialization table contained in device descriptor modules for
SCF devices. The initialization table immediately follows the standard device descriptor module header
fields and defines initial values for the 1/0 editing features. The size of the table is defined in the M$Opt

field.

Device Path

Descriptor Descriptor

Offset Label Description

$48 PD_DTP Device Type

$49 PD_UPC Upper Case Lock

$4A PD_BSO Backspace Option

$4B PD_DLO Delete Line Character

$4C PD_EKO Echo

$4D PD_ALF Automatic Line Feed

$4E PD_NUL End Of Line Null Count

$4F PD_PAU End Of Page Pause

$50 PD_PAG Page Length

$51 PD_BSP Backspace Input Character
$52 PD_DEL Delete Line Character

$53 PD_EOR End Of Record Character

$54 PD_EOF End Of File Character

$55 PD_RPR Reprint Line Character

$56 PD_DUP Duplicate Line Character

$57 PD_PSC Pause Character

$58 PD_INT Keyboard Interrupt Character
$59 PD_QUT Keyboard Abort Character
$5A PD_BSE Backspace Output

$5B PD_OVF Line Overflow Character (bell)
$5C PD_PAR Parity Code, # of Stop Bits, and # of Bits/Character
$5D PD_BAU Adjustable Baud Rate

$5E PD_D2P Offset To Output Device Name
$60 PD_XON X-ON Character

$61 PD_XOFF X-OFF Character

$62 PD_TAB Tab Character

$63 PD_TABS Tab Column Width

NOTE: In this table the offset values are the device descriptor offsets, while the labels are the path
descriptor offsets. To correctly access these offsets in a device descriptor using the path descriptor labels,
you must make the following adjustment: (M$DTyp - PD_OPT).

3-6

0S-9 Technical I/O Manual

Sequential Character File Manager SCF Device Descriptor Modules

For example, to access the letter case in a device descriptor, use PD_UPC + (M$DTyp - PD_OPT). To
access the letter case in the path descriptor, use PD_UPC. Module offsets are resolved in assembly code
by using the names shown here and linking with the relocatable library: sys.l or usr.l.

NOTE: You can change or disable most of these special editing functions by changing the corresponding
control character in the path descriptor. Do this with the 1$SetStt service request, the tmode utility, or
the xmode utility.

Name Description

PD_DTP Device Type
Set to zero for SCF devices.

PD_UPC Letter case
If PD_UPC is not equal to zero, input or output characters in the range “a..z” are made
“A.Z".

PD_BSO Destructive Backspace
If PD_BSO is zero when a backspace character is input, SCF echoes PD_BSE (backspace
echo character). If PD_BSO is non-zero, SCF echoes PD_BSE, space, PD_BSE.

PD DLO Delete
If PD_DLO is zero, SCF deletes by backspace-erasing over the line. If PD_DLO is not
zero, SCF deletes by echoing a carriage return/line-feed.

PD_EKO Echo
If PD_EKO is not zero, then all input bytes are echoed, except undefined control characters
which are printed as periods. If PD_EKO is zero, input characters are not echoed.

PD_ALF Automatic line feed
If PD_ALF is not zero, carriage returns are automatically followed by line-feeds.

PD_ NUL End of line null count
Indicates the number of NULL padding bytes to be sent after a carriage return/line-feed
character.

PD_PAU End of page pause
If PD_PAU is not zero, an auto page pause occurs upon reaching a full screen of output.
See PD_PAG for setting page length.

Name Description

PD_PAG Page length

Contains the number of lines per screen (or page).

0S-9 Technical I/O Manual 3-7

SCF Device Descriptor Modules

Sequential Character File Manager

PD_BSP Backspace “input” character
Indicates the input character recognized as backspace. See PD_BSE and PD_BSO.

PD DEL Delete line character
This field indicates the input character recognized as the delete line function. See
PD_DLO.

PD_EOR End of record character
This field defines the last character on each line entered (ISRead, I$ReadLn). An output
line is terminated (I$Writln) when this character is sent. Normally PD_EOR should be set
to $0D. WARNING: If PD_EOR is set to zero, SCF’s ISReadLn will never terminate,
unless an EOF or error occurs.

PD _EOF End of file character
This field defines the end-of-file character. SCF returns an end-of-file error on I$Read or
I$ReadLn if this is the first (and only) character input.

PD_RPR Reprint line character
If this character is input, SCF (I3ReadLn) reprints the current input line. A carriage return
is also inserted in the input buffer for PD_DUP (see below) to make correcting typing
errors more convenient.

PD_DUP Duplicate last line character
If this character is input, SCF (I$ReadLn) duplicates whatever is in the input buffer
through the first PD_EOR character. Normally, this is the previous line typed.

PD PSC Pause character
If this character is typed during output, output is suspended before the next end-of-line.
This also deletes any “type ahead” input for ISReadLn.

PD_INT Keyboard interrupt character
If this character is input, SCF sends a keyboard interrupt signal to the last user of this path.
It terminates the current I/O request (if any) with an error identical to the keyboard interrupt
signal code. PD_INT is normally set to a control-C character.

Name Description

PD_QUT Keyboard abort character
If this character is input, SCF sends a keyboard abort signal to the last user of this path. It
terminates the current 1/0 request (if any) with an error code identical to the keyboard abort
signal code. PD_QUT is normally set to a control-E character.

PD _BSE Backspace “output” character (echo character)

This field indicates the backspace character to echo when PD_BSP is input. See PD_BSP
and PD_BSO.

3-8

0S-9 Technical I/O Manual

Sequential Character File Manager SCF Device Descriptor Modules

PD OVF Line overflow character
If IBReadLn has satisfied its input byte count, SCF ignores any further input characters
until an end-of-record character (PD_EOR) is received. It echoes the PD_OVF character
for each byte ignored. PD_OVF is usually set to the terminal’s bell character.
PD_PAR Parity code, number of stop bits & bits/character
Bits zero and one indicate the parity as follows:
0 = no parity
1 = odd parity
3 = even parity
Bits two and three indicate the number of bits per character as follows:
0 = 8 bits/character
1 =7 bits/character
2 = 6 bits/character
3 =5 bits/character
Bits four and five indicate the number of stop bits as follows:
0 = 1 stop bit
1 =1 1/2 stop bits
2 = 2 stop bits
Bits six and seven are reserved.
Name Description
PD_BAU Software adjustable baud rate
This one-byte field indicates the baud rate as follows:
0= 50 baud 6= 600 baud C = 4800 baud
= 75 baud 7= 1200 baud D = 7200 baud
2= 110 baud 8 = 1800 baud E = 9600 baud
= 134.5 baud 9= 2000 baud F = 19200 baud
= 150 baud A = 2400 baud 10 = 38400 baud
= 300 baud B = 3600 baud FF = External
PD_D2P Offset to output device descriptor name string

SCF sends output to the device named in this string. Input comes from the device named
by the M$PDev field. This permits two separate devices (a keyboard and video display)
to be one logical device. Usually PD_D2P refers to the name of the same device descriptor
in which it appears.

0S-9 Technical I/O Manual 3-9

SCF Device Descriptor Modules Sequential Character File Manager

PD_XON

PD_XOFF

PD Tab

PD_Tabs

X-ON character
See PD_XOFF below.

X_OFF character

The X-ON and X-OFF characters are used to support software handshaking. Output from
a SCF device is halted immediately when PD_XOFF is received and will not be resumed
until PD_XON is received. This allows the distant end to control its incoming data stream.
Input to a SCF device is controlled by the driver. If the input FIFO is nearly full, the driver
sends PD_XOFF to the distant end to halt input. When the FIFO has been emptied
sufficiently, the driver resumes input by sending the PD_XON character. This allows the
driver to control its incoming data stream.

NOTE: When software handshaking is enabled, the driver consumes the PD_XON and
PD_XOFF characters itself.

Tab character

In ISWritLn calls, SCF expands this character into spaces to make tab stops at the column
intervals specified by PD_Tabs. NOTE: SCF does not know the effect of tab characters
on particular terminals. Tab characters may expand incorrectly if they are sent directly to
the terminal.

Tab field size
See PD_Tab.

3-10

0S-9 Technical I/O Manual

Sequential Character File Manager SCF Path Descriptor Definitions

SCF Path Descriptor Definitions

The first 27 fields of the path options section (PD_OPT) of the SCF path descriptor are copied directly
from the SCF device descriptor initialization table. The table is shown on the following page.

The fields can be examined or changed using the I$GetStt and I1$SetStt service requests or the tmode and
xmode utilities.

You may disable the SCF editing functions by setting the corresponding control character value to zero.
For example, if you set PD_INT to zero, there is no “keyboard interrupt” character.

NOTE: Full definitions for the fields copied from the device descriptor are available in the previous
section. The additional path descriptor fields are defined below:

Name Description

PD_TBL Device Table Entry
Contains a user-visible copy of the device table entry for the device.

PD _COL Current Column
Contains the current column position of the cursor.

PD_ERR Most Recent Error Status
Contains the most recent I/O error status.

0S-9 Technical I/O Manual 3-11

SCF Path Descriptor Definitions

Sequential Character File Manager

Offset Name Description

$80 PD_DTP Device Type

$81 PD_UPC Upper Case Lock

$82 PD_BSO Backspace Option

$83 PD DLO Delete Line Character

$84 PD_EKO Echo

$85 PD_ALF Automatic Line Feed

$86 PD_NUL End Of Line Null Count

$87 PD_PAU End Of Page Pause

$88 PD_PAG Page Length

$89 PD_BSP Backspace Input Character
$8A PD_DEL Delete Line Character

$8B PD_EOR End Of Record Character
$8C PD_EOF End Of File Character

$8D PD_RPR Reprint Line Character

$8E PD_DUP Duplicate Line Character
$8F PD _PSC Pause Character

$90 PD_INT Keyboard Interrupt Character
$91 PD_QUT Keyboard Abort Character
$92 PD_BSE Backspace Output

$93 PD_OVF Line Overflow Character (bell)
$94 PD_PAR Parity Code, # of Stop Bits, and # of Bits/Character
$95 PD_BAU Adjustable Baud Rate

$96 PD_D2P Offset To Output Device Name
$98 PD_XON X-ON Character

$99 PD_XOFF X-OFF Character

$9A PD _TAB Tab Character

$9B PD_TABS Tab Column Width

$9C PD_TBL Device Table Entry

$A0 PD_Col Current Column

$A2 PD_Err Most Recent Error Status
$A3 Reserved

NOTE: Offset refers to the location of a path descriptor field, relative to the starting address of the path
descriptor. Path descriptor offsets are resolved in assembly code by using the names shown here and
linking the module with the relocatable library: sys.l or usr.l.

3-12

0S-9 Technical I/O Manual

Sequential Character File Manager SCF Device Drivers

SCF Device Drivers

SCF device drivers support 1/0O devices that read and write data one character at a time, such as serial
devices.

Generally, the input data (usually from a keyboard) is buffered by the driver’s interrupt service routine.
Each read request returns one character at a time from the driver’s circular input FIFO buffer. If the buffer
is empty when the request occurs, the driver must suspend the calling process until an input character is
received. Input interrupts are usually enabled throughout the time the device is attached to the system. If
the device is incapable of interrupt-driven operation, the driver must poll the device until the data becomes
available. This situation has a harmful effect on real-time system performance.

The output data may or may not be buffered, depending on the physical characteristics of the output device.
If the device is a memory-mapped video display driven by the main CPU, buffering and interrupts are not
usually needed. If the device is a serial interface, use buffering and interrupts. Each write request passes
a single output character to the driver which is placed in a circular FIFO output buffer. The output interrupt
routine takes output characters from this buffer. If the buffer is full when a write request is made, the driver
should suspend the calling process until the buffer empties sufficiently.

The 1$GetStt system call (SS_Ready) and 1$SetStt system call (SS_SSig) permit an application pro-
gram to determine if the input buffer contains any data. By checking first, the program is not suspended
if data is not available.

The driver may optionally handle full input buffer conditions using X-ON/X-OFF or similar protocols.
The input routine must also handle the special pause, abort, and quit control characters. All other control
characters (such as backspace, line delete, etc.) are handled at the file manager level.

0S-9 Technical I/O Manual 3-13

Special Characters and NULLs Sequential Character File Manager

Special Characters and NULLs

Line-editing functions (if any) are generally dealt with at the file manager level by SCF. Device drivers
are, however, required to deal with the following special characters in their input character routine:

* NULL character
The driver’s input routine should first determine if the received character isa NULL. If so, it
should skip all special character tests, because the disabled state of these special characters is
indicated by a NULL in the appropriate path option field. Failure to check for a received NULL
results in erratic terminal and/or line-editing operation.

* Abort and Interrupt Characters
The abort and interrupt characters should cause the appropriate signal to be sent to the last
process that used the device. The received character should then be buffered.

» Page Pause
The page pause character should cause a page pause request to be set in the echo device’s static
storage. The received character should then be buffered.

» Software Flow Control
The start and stop transmission characters should cause the resumption/suspension of output
data transmission. When this protocol is used, these characters are consumed by the driver’s
input character routine.

Parity Stripping

SCF device drivers do not usually modify the raw data stream when receiving and transmitting data. The
drivers are expected to pass eight-bit data characters “as is.” When parity is enabled, however, the driver
may have to be sensitive to the issue of “parity stripping.”

For eight-bit data characters, parity is not normally an issue (except for error checking), because the
character parity status is signalled “out-of-band” from the character itself (there is a parity-error status
flag). For smaller sized data characters (for example, seven-bit characters), the hardware sometimes
passes the value of the parity bit in the high-bit of the received character. If a driver supports parity
checking and non-eight-bit character formats, then the driver’s input character routine must be sensitive to
the current communications mode and strip the parity flag from the data prior to processing and buffering
the character. Failure to strip this parity value from the received character may cause erratic terminal
operation (for example, the software flow control characters may not be recognized correctly).

Data Flow Control

Data flow control is the process used to control the transfer of data over the physical interface. It ensures
that each end of the connection only transmits data when the other end is capable of receiving data. The
data flow may be controlled by either hardware and/or software:

3-14 0S-9 Technical I/O Manual

Sequential Character File Manager Data Flow Control

Hardware Flow Control

Hardware flow control uses physical signal lines to indicate the state of the interface. The Ready
To Send (RTS) and Clear To Send (CTS) signals on the RS-232 Standard Interface are examples
of these physical lines.

The level of implementation of hardware handshaking in a SCF driver is determined by the
capabilities of the serial interface itself, which include the capabilities of the interface-chip and the
board-level implementation of the interface.

A driver that implements fully functional hardware flow control performs the following functions:

» Configures the transmitter to only send data when the distant end’s “ready-to-receive”
IS active.

» Controls the distant end’s “ready-to-transmit” line so that input buffer over-runs do not
occur.

e Supports the SS_EnRTS, SS_DsRTS, SS_DCDOn, and SS_DCDOff SetStat
calls, to allow a user application to directly control/monitor the serial connection.

A driver that provides minimal (or no) support for hardware flow control usually configures the
hardware control lines so that the interface is “ready” whenever the device is attached. Drivers that
provide this level of operation usually implement software flow control.

Software Flow Control

Software flow control uses a software protocol to indicate the “ready” state of the two ends of the
interface.

Support for software flow control is provided via the PD_XON (start transmission) and
PD_XOFF (stop transmission) fields of the device descriptor. When these fields are enabled (both
non-zero), then the driver implements the protocol as follows:

» If the driver receives the stop transmission character, it should immediately suspend
data transmission. The driver can resume transmission when a start transmission
character is received. Thus, the distant end is allowed to control its incoming data
stream.

» If the driver’s input routine detects that its input buffer is about to fill, then it causes a
stop transmission character to be sent to the distant end. When the buffer has been
sufficiently emptied, the driver can cause transmission of a start transmission character.
Thus, the driver is capable of controlling its incoming data stream.

When implementing software flow control, note the following points:

0S-9 Technical I/O Manual 3-15

Data Flow Control

Sequential Character File Manager

The start transmission and stop transmission characters are consumed by the driver’s
input routine. If pure binary transfers are desired (the character values for flow control
are actually part of the data stream), then software flow control must be disabled and
hardware flow control enabled.

Software flow control only works reliably with interrupt-driven drivers, because the
detection of the incoming stop transmission character must take place immediately.

The characters involved with the protocol must be “agreed upon” by both ends of the
connection. Most systems default to the ASCII control characters X-ON and X-OFF.
However, any other pair of characters may be used if both ends concur.

When controlling the input data, the driver’s input routine and Read routine will
cooperate in the protocol as follows:

» The input routine detects a “high-water” mark; a point at which the input buffer
is almost full. When this mark is reached (ten characters remaining in buffer),
the input routine causes the stop transmission character to be sent. The “head
room” provided by the high-water mark should be set so that the distant end has
time to suspend transmission before the buffer actually fills.

» The Read routine simply takes characters from the input buffer until the buffer
count reaches the “low-water” mark. Then, the Read routine causes the start
transmission character to be sent to resume input. The low-water mark is
usually set to a low value to keep the total overhead in the software flow control
to a minimum.

3-16

0S-9 Technical I/O Manual

Sequential Character File Manager SCF Device Driver Storage Definitions

SCF Device Driver Storage Definitions

SCF device driver modules contain a package of subroutines that perform raw 1/O transfers to or from a
specific hardware controller. Because these modules are re-entrant, one copy of the module can
simultaneously run several identical 1/O controllers.

The kernel allocates a static storage area for each device (which may control several drives). The size of
the storage area is given in the device driver module header (M$Mem). Some of this storage area is
required by the kernel and SCF; the device driver may use the remainder in any manner. Information on
device driver static storage required by the operating system can be found in the scfstat.a DEFS file.
Static storage is used as follows:

Offset Name Maintained By Description

$00 V_PORT Kernel Device base address

$04 V_LPRC File Manager Last active process ID

$06 V_BUSY File Manager Active process ID

$08 V_WAKE Driver Process ID to awaken

$O0A V_Paths Kernel Linked list of open paths
$0E Reserved

$2E V_DEV2 Kernel Addr. of attached device static storage
$32 V_TYPE File Manager Device type or parity

$33 V_LINE File Manager Lines left until end of page
$34 V_PAUS Driver/File Man. Pause request

$35 V_INTR File Manager Keyboard interrupt character
$36 V_QUIT File Manager Keyboard abort character
$37 V_PCHR File Manager Pause character

$38 V_ERR Driver Error accumulator

$39 V_XON File Manager X-ON character

$3A V_XOFF File Manager X-OFF character

$3B Reserved

$3C V_Presvd Reserved

$46 V_Hangup Driver/File Man. Path lost flag

$54 Device Driver Variables begin here

NOTE: Offset refers to the location of a static storage field, relative to the starting address of the static
storage area. Offsets are resolved in assembly code by using the names shown here and linking the module
with the relocatable library: sys.l.

0S-9 Technical I/O Manual 3-17

SCF Device Driver Storage Definitions Sequential Character File Manager

Name Description

V_PORT Device base address
The device’s physical port address. It is copied from M$Port in the device descriptor
when the device is attached by the kernel.

V_LPRC Last active process ID
The process ID of the last process to use the device. The IRQ service routine sends this
process the proper signal when an interrupt or quit character is received.

V_BUSY Current active process
The process ID of the process currently using the device. It is used to implement 1/O
Blocking by SCF. This field is also used by the interrupt drivers when they wish to
suspend themselves, by copying V_BUSY to V_WAKE (prior to suspending
themselves). A value of zero indicates the device is not busy.

V_WAKE Process ID to awaken
The process ID of any process that is waiting for the device to complete 1/0. A value
of zero indicates that no process is waiting. V_WAKE is set by the driver from
V_BUSY and provides the interlock between the driver and the driver’s interrupt
service routine.

V_PATHS Linked list of open paths
A singly-linked list of all paths currently open on this device.

V_DEV2 Attached device static storage
The address of the echo (output) device’s static storage area. A device is typically its
own echo device, but may not be, as in the case of a keyboard and a memory mapped
video display. The interrupt service routine uses this pointer to set an output pause
request (see V_PAUS and V_PCHR). If the value in V_DEV2 is zero, there is no
echo device.

V_TYPE Device type or parity
This value is copied from PD_PAR in the path descriptor by SCF, so that it may be
used by interrupt service routines, if required.

V_LINE Lines left until end of page

The number of lines left until the end of the page. Paging is handled by SCF.

3-18

0S-9 Technical I/O Manual

Sequential Character File Manager SCF Device Driver Storage Definitions

Name

Description

V_PAUS

V_INTR

V_QUIT

V_PCHR

V_ERR

V_XON

V_XOFF

V_Hangup

Pause request

A flag used to signal SCF that a pause character has been received. Setting its value to
anything other than 0 causes SCF to stop transmitting characters at the end of the next
line. Device driver input routines must set V_PAUS in the echo device’s static storage
area. SCF checks this value in the echo device’s static storage when output is sent.
Once paused, SCF clears any type-ahead (ISReadLn), waits for and consumes the next
input character, clears V_PAUS, and resumes output (see V_DEV2 and V_PCHR).

Keyboard interrupt characters

This value is copied from PD_INT in the path descriptor by SCF, so that it may be used
by the driver’s input routine. Receipt of this character should cause a signal (S$Intrp)
to be sent to the last user of the device (V_LPRC).

Quit character

This value is copied from PD_QUT in the path descriptor by SCF so that it may be used
by the driver’s input routine. Receipt of this character should cause a signal (S$Quit)
to be sent to the last user of the device (V_LPRC).

Pause character

This value is copied from PD_PSC in the path descriptor by SCF, so that it may be
used by the driver’s input routine. When the input routine receives this character, it
should set the output pause request flag (V_PAUS) in the echo device’s static storage
(V_DEV2). (See V_DEV2 and V_PAUS.)

Error accumulator

This location is used to accumulate 1/0 errors. Typically, the IRQ service routine uses
it to record input errors so that they may be reported later when SCF calls the device
driver read routine.

X-ON character
This character is copied from PD_XON of the path descriptor by SCF, so that it may
be used for software handshaking by interrupt service routines, if required.

X-OFF character
This character is copied from PD_XOFF of the path descriptor by SCF, so that it may
be used for software handshaking by interrupt service routines, if required.

Path Lost Flag
This flag should be set to a non-zero value when the driver detects that the path has been
lost (for example, carrier lost on a modem).

0S-9 Technical I/O Manual 3-19

Linking SCF Drivers Sequential Character File Manager

Linking SCF Drivers

After a SCF driver has been assembled into its relocatable object file (ROF), the driver needs to be linked
to produce the final driver module. Linking resolves all code references in drivers that are comprised of
several ROF files. It also resolves the external data and static storage references by the driver.

The most important part of linking is to correctly resolve the static storage references. Generally, the static
storage area is composed of two sections, in this order (see Figure 3-1):

I/0 globals

| Driver-declared variables

The driver-declared variables are declared in vsect areas of the driver, but they must be allocated after the
I/0 globals. To allocate all of the storage, in the correct order, the scfstat.| must be the first module
specified. The scfstat.l file is usually found in the system’s LIB directory. The following is a typical
linker command line for an SCF driver:

168 /dd/L1B/scfstat.| REL/sc335.r -O=0BJS/sc335

NOTE: Failure to link the I/O global storage first, or not at all, results in erratic driver operation.

3-20 0S-9 Technical I/O Manual

Sequential Character File Manager SCF Static Storage Layout

DEFS File LIB File
High Memory +
Driver-declared
Storage (vsect) N/A N/A
SCF I/O Globals scfdev.a (scfstat.a)
scfstat.l
Kernel /0 Globals iodev.a (scfstat.a)

Low Memory +

Figure 3-1:. SCF Static Storage Layout

0S-9 Technical I/O Manual 3-21

SCF Device Driver Subroutines Sequential Character File Manager

SCF Device Driver Subroutines

As with all device drivers, SCF device drivers use a standard executable memory module format with a
module type of Drivr (code $EOQ). SCF drivers are called in system state.

NOTE: 1/0 system modules must have the following module attributes:

* They must be owned by a super-user (0.n).

» They must have the system-state bit set in the attribute byte of the module header. (OS-9 does
not currently make use of this, but future revisions will require that 1/0 system modules be sys-
tem-state modules.)

The execution offset address in the module header points to a branch table that has seven entries. Each
entry is the offset of the corresponding subroutine. The branch table appears as follows:

ENTRY dc.w INIT initialize device
dc.w READ read character
dc.w WRITE write character
dc.w GETSTAT get device status
dc.w SETSTAT set device status
dc.w TERM terminate device
dc.w TRAP handle illegal exception (0 = none)

Each subroutine should exit with the carry bit of the condition code register cleared, if no error occurred.
Otherwise, set the carry bit and return an appropriate error code in the least significant word of register
dl.w.

The TRAP entry point is currently not used by the kernel, but in the future will be defined as the offset to
error exception handling code. Because no handler mechanism is currently defined, this entry point should
be set to zero to ensure future compatibility.

The following pages describe each subroutine.

3-22 0S-9 Technical I/O Manual

Sequential Character File Manager INIT

INIT Initialize Device and its Static Storage

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(al) = address of device descriptor module
(a2) = address of device static storage

(ad) = process descriptor pointer

(ab) = caller’s register stack pointer

(a6) = system global data pointer

None

cc = carry bit set
dl.w = error code

The INIT routine must:

Initialize the device static storage.
! Initialize the device control registers.

/A Place the driver IRQ service routine on the IRQ polling list by using the F$IRQ
service request, if required.

@ Enable interrupts if necessary.

Prior to being called, the device static storage is cleared (set to zero) except for
V_PORT which contains the device port address. Do not initialize the portion of static
storage used by SCF.

If INIT returns an error, it does not have to clean up its operation, for example, remove
device from polling table or disable hardware. The kernel calls TERM to allow the
driver to clean up INIT’s operation before returning to the calling process.

NOTE: Ifthe INIT routine causes an interrupt to occur, the interrupt can be handled in
one of the following ways:

» Process the interrupt directly by masking interrupts to the level of the device,
polling/servicing the device hardware, and then restoring the previous interrupt
level. This is the preferred technique unless the interrupt is time-consuming.

» Allow the interrupt service routine to service the hardware. In this case, the
process descriptor contains the process ID (P$ID) to which V_WAKE should
be set. V_BUSY cannot be used because it is zero when INIT is called.

0S-9 Technical I/O Manual 3-23

READ

Sequential Character File Manager

READ Get Next Character

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(al) = address of path descriptor

(a2) = address of device static storage
(ad) = process descriptor pointer

(ab) = caller’s register stack pointer
(a6) = system global data pointer

d0.b = input character

cc = carry bit set
dl.w = error code

This routine returns the next character available. Depending upon whether or not the
routine is interrupt-driven, READ typically operates as follows:

Polled I/O Mode

A polled I/0O read routine checks the hardware for available data. If there is none, the
routine must wait until data is available. When data is available, READ should strip
parity (if required) and then determine whether or not the character requires special
handling:

If the character is the output pause character (V_PCHR), READ sets a pause
request (V_PAUS) in the echo device’s static storage (V_DEV2).

| If the character is a keyboard interrupt (V_INTR) or quit (V_QUIT) character,
READ sends the appropriate signal to the last process to use the device
(V_LPRC).

NOTE: If the received character is a NULL character, then special character tests
should be ignored.

NOTE: Software handshaking, as specified by V_XON/V_XOFF is not usually
implemented for polled-mode 1/O, as the lack of interrupt-driven operation makes this
handshake feature unreliable. Polled I/O drivers can usually only perform hardware
handshaking.

The character read is returned to SCF in register dO.

Interrupt 1/0 Mode

For interrupt-driven drivers, READ gets data from the driver’s input FIFO buffer. This
buffer is filled by the input interrupt service routine. The following describes how
READ operates.

READ determines if another process has set up a “send signal on data ready”

3-24

0S-9 Technical I/O Manual

Sequential Character File Manager READ

NOTE
routine

condition. If so, READ returns a “not ready” (E$NotRdy) error (the device is
busy for reading, but not for writing).

READ then determines if data is available in the input FIFO buffer. If not, the
driver should suspend itself by copying its process ID from V_BUSY to
V_WAKE and then performing an F$Sleep service request to put itself to sleep
indefinitely.

When the driver awakens, either data is available in the FIFO or a signal
occurred. If a signal occurred, either the signal value is in P$Signal (process
descriptor) or the process is condemned (condemn bit set in P$State). If the
process is condemned or the signal value is deadly to 1/0 (less than S$Deadly),
then the driver should return immediately to SCF with the carry bit set and the
signal code (if any) as the error code.

READ should get the next character from the input FIFO.

If software handshaking is implemented, READ should determine if input has
been halted (V_XOFF sent to distant end). If so, and reading this character
causes the FIFO count to go below the “low-water mark” of the FIFO, then
resume input by sending a V_XON character to the distant end and flagging
input resumed.

READ should determine if any errors have been logged by the input interrupt
service routine (V_ERR). If so, READ returns an error (E$Read) to SCF and
clears V_ERR. Otherwise, READ returns the character read to SCF in register
do.

. Data buffers for queueing data between the main driver and the IRQ service

are not automatically allocated by SCF. They should be defined in the device

driver’s static storage area (vsect) or allocated dynamically by the driver (for example,

at INIT

NOTE

call).

: Normally, READ should not have to enable the device’s “data-buffer-full”

interrupt. The device should normally be configured so that any input while the device
is attached causes an interrupt. This is usually done during INIT. Input interrupts are
typically disabled only when the device is detached (TERM routine).

0S-9 Technical I/O Manual

3-25

WRITE

Sequential Character File Manager

Wizdl= Output a Character

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

d0.b = character to write

(al) = address of the path descriptor
(a2) = address of device static storage
(ad) = process descriptor pointer

(ab) = caller’s register stack pointer
(a6) = system global data pointer

None

cc = carry bit set
d1l.w =error code

The WRITE routine writes a character. Depending upon whether or not the routine is
interrupt-driven, WRITE typically operates as follows:

Polled I/O Mode

A polled 1/0O driver checks the hardware for “ready-to-transmit”. When ready, the char-
acter is written to the hardware and the driver returns to SCF without an error.

Interrupt 1/0 Mode

For interrupt-driven drivers, WRITE attempts to put the character into the driver’s
output FIFO buffer and then ensures that output interrupts are enabled. The driver’s
output interrupt service routine empties the output FIFO. WRITE operates as follows:

WRITE determines if space is available in the output FIFO buffer. If not, the
device driver should suspend itself by copying its process ID from V_BUSY to
V_WAKE and then performing a F$Sleep service request to put itself to sleep
indefinitely.

When the driver awakens, either space is available in the output FIFO or a signal
occurred. If a signal occurred, either the signal value is in P$Signal (process
descriptor) or the process is condemned (condemn bit set in P$State). If the
process is condemned or the signal value is deadly to 1/0 (less than S$Deadly),
the driver should return immediately to SCF with the carry bit set and the signal
code (if any) as the error code.

I WRITE puts the character into the output FIFO buffer.

/£ WRITE determines if output interrupts are currently enabled. If so, this implies
that output is currently active (using the output IRQ service routine) and the
driver can simply return to SCF without an error.

@ If output interrupts are disabled, then output is halted due to software
handshaking (V_XOFF received from distant end) or a previously empty output

3-26

0S-9 Technical I/O Manual

Sequential Character File Manager WRITE

FIFO. If output is halted due to software handshaking, the driver should return
to SCF without an error. Otherwise, the driver should enable output interrupts
on the device (allowing the output interrupt service routine to empty the output
FIFO) and return to SCF without an error.

NOTE: Data buffers for queueing data between the main driver and the IRQ service
routine are not automatically allocated by SCF. They should be defined in the device
driver’s static storage area (vsect) or allocated dynamically by the driver (for example,
at INIT call).

NOTE: Typically, this routine should ensure that output interrupts are enabled only
when necessary. After an output interrupt is generated, the IRQ service routine contin-
ues to transmit data until the output FIFO is empty and then it typically disables the de-
vice’s “ready-to-transmit” interrupts.

This dynamic enabling/disabling of the device’s transmit interrupts is essential to some
serial devices, as the “transmit ready” interrupt is generated every “character period”
(that is, at the device’s baud rate), regardless of whether a character is actually trans-
mitted. This type of situation leads to excessive and unnecessary overhead to the sys-
tem, and should be avoided.

0S-9 Technical I/O Manual 3-27

GETSTAT/SETSTAT Sequential Character File Manager

GETSTAT/SETSTAT Get/Set Device Status

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

d0.w = function code

(al) = address of path descriptor

(a2) = address of device static storage
(ad) = process descriptor pointer

(a5) = caller’s register stack pointer
(a6) = system global data pointer

Depends upon function code

cc = carry bit set
d1l.w =error code

These routines are wild-card calls used to get/set the device’s operating parameters as
specified for the 1$GetStt and 1$SetStt service requests.

Calls which involve parameter passing require the driver to examine or change the
register stack variables. These variables contain the contents of the MPU registers at
the time the I$GetStt/I$SetStt request was made. Parameters passed to the driver are
set up by the caller prior to using the service call. Parameters passed back to the caller
are available when the service call completes.

Typical SCF drivers handle the following 1$3GetStt/I$SetStt calls:
I$Getstt: SS EOF, SS_Opt, SS_Ready

|$SetStt: SS Break, SS_DCOff*, SS_DCOn*, SS_DsRTS,
SS_EnRTS, SS _Open, SS_Opt, SS_Relea*, SS_SSig*,

* only for interrupt-driven drivers

Any unsupported 1$GetStt/I$SetStt calls to the driver should return an unknown
service error (E$UNKSvc).

NOTE: A minimal SCF driver should support SS_Ready and SS_EOF, and if
interrupt-driven, SS_SSig.

The following pages describe the driver’s role in the implementation of the above
I$GetStt/I$SetStt calls.

3-28

0S-9 Technical I/O Manual

Sequential Character File Manager GETSTAT/SETSTAT

GetStat Calls:

SS_EOF

SS_Opt

SS_Ready

This routine should exit without an error.

This routine is called when SCF is asked to return the current path
options. SCF calls the driver so that the driver can update the path
descriptor’s baud rate (PD_BAU) and communications mode
(PD_PAR) to the current hardware values. This function is usually
done by drivers that support dynamic changes to baud rate, etc. Drivers
that do not support these changes typically return an unknown service
request error (E$UNkSvc).

This routine returns the current count of data available in the input FIFO
buffer. If data is available, the count should be returned in the caller’s
d1 register (R$d1 offset from passed a5) and the driver should return
to SCF without an error. If no data is available, then a “not ready” error
(E$NotRdy) should be returned to SCF.

SetStat Calls:

SS_Break

SS_DCOff
SS_DCOn

This routine is called when an application wishes to assert a “break”
condition on the outgoing serial line.

These routines are called when you wish to notify an

application that the Data Carrier has been asserted(SS_DCOn) or
negated (SS_DCOff). Typically, this routine saves the process 1D
(PD_CPR), path number (PD_PD), and signal code (user’s d2
register) in static storage and then returns without error. The IRQ
service routine detects the presence or loss of the Data Carrier, sends the
signal, and clears down the signal condition.

Drivers which have hardware detection of a change-of-state only on the
Data Carrier line typically have to track the current state (asserted or
negated) of the line and signal a change of state accordingly.

NOTE: Only interrupt-driven drivers should implement these calls.

SS DsRTS These routines are called by applications that wish to SS_EnRTS
explicitly assert (SS_EnRTS) or negate (SS_DsRTS) the RTS

SS_Open

handshake line. Typically, the driver performs the hardware action and
returns without an error.

This routine is called by SCF whenever a new path to the device is
opened. Typically, drivers handle this call in the same way as a SetStat
(SS_Opt) call, i.e. check for baud-rate, configuration mode changes.

0S-9 Technical I/O Manual

3-29

GETSTAT/SETSTAT

Sequential Character File Manager

SS_Opt

SS Relea

SS_SSig

This routine is called when SCF is asked to change the current path
options. SCF passes the call to the driver so that it may implement baud-
rate, configuration mode, etc., changes to the hardware. Typically, the
driver checks PD_BAU and PD_PAR to determine if they have
changed. If not, the driver simply returns without an error. If one or
both of these have changed, the driver validates the requested change
and if correct, implements the change in hardware (for example, new
baud rate). If the request is for an unsupported or illegal 1/0 mode (for
example, invalid stop-bit count), then the driver typically returns a “bad
I/0 mode” error (E$BMode) and refuses the change.

This routine is called when either SCF or an application wishes to clear
down device signalling. This routine should erase any pending signal
conditions (due to SS_SSig, SS_DCOn, SS_DCOff) and return with-
out an error.

NOTE: When clearing down the signal condition(s), the driver should
only clear the signal if the process ID (PD_CPR) and path number
(PD_PD) of the caller match the process ID and path number of the
original set-up call.

This routine is called when applications wish to have a signal sent to
them when input data is available. Typically, the routine operates as
follows:

It determines if another process has set up a SS_SSig condition.
If so, a “not ready” error (E$NotRdy) is returned.

| It determines if data is available in the input FIFO buffer. If so,
the specified signal (user’s d2 register value) is sent to the
process (PD_CPR) and the routine returns.

/ If no data is available, the process ID, path number (PD_PD),
and signal are saved in static storage and the routine simply re-
turns. When the data arrives, the input IRQ service routine sends
the signal and releases the send-signal condition.

NOTE: Setting up a “send signal on data ready” condition will “busy”
the driver for read requests (see READ description), but allow writes to
proceed as normal.

NOTE: Only interrupt-driven drivers should implement this call.

3-30

0S-9 Technical I/O Manual

Sequential Character File Manager TERM

TERM Terminate Device

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(al) = device descriptor pointer

(a2) = pointer to device static storage
(ad) = process descriptor pointer
(a6) = system global data pointer

None

cc = carry bit set
dl.w = error code

This routine is called when a device is no longer in use in the system (see I$Detach).
The TERM routine must:

Copy the process ID from the process descriptor (P$ID) into V_BUSY and
V_LPRC.

I Determine if the output FIFO buffer contains any data waiting to be written. If
so, the driver should suspend itself by copying its process ID from V_BUSY to
V_WAKE and performing an F$Sleep service request to put itself to sleep
indefinitely.

If the driver awakens before the output FIFO has emptied (due to a signal), the
driver should suspend itself again until the buffer is empty.

/ After the pending output data has been written, the driver should disable hard-
ware handshake protocols and then disable all device interrupts, if the driver is
interrupt-driven. The device should then be removed from the system’s IRQ
polling table (F$IRQ), if applicable.

@ Return any buffers the driver has requested on behalf of itself. NOTE: The
driver should not attempt to return buffers within its defined static storage area.
The kernel releases this memory when the TERM routine completes.

NOTE: Ifan error occurs during the device’s INIT routine, the kernel calls the TERM
routine to allow the driver to clean up. If the TERM routine uses static storage variables
(for example, interrupt mask values, dynamic buffer pointers), it should validate these
variables prior to using them. The INIT routine may not have set up all the variables
prior to exiting with the error.

0S-9 Technical I/O Manual 3-31

IRQ Service Routine Sequential Character File Manager

IRQ Service Routine Service Device Interrupts

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(a2) = static storage
(a3) = port address
(a6) = system global static storage

None

cc = carry bit set (interrupt not serviced)

This routine is called directly by the kernel’s IRQ polling table routines. Its function is
to:

Check the device for a valid interrupt. If the device does not have an interrupt
pending, the carry bit must be set and the routine exited with an RTS instruction
as quickly as possible. Setting the carry bit signals the kernel that the next
device on the vector should have its IRQ service routine called.

! Service device interrupts. There are three categories of interrupts: control
interrupts, input interrupts, and output interrupts. Usually, input interrupts are
checked first, because most serial hardware devices have minimal (or no)
hardware data buffering. After the interrupt is serviced, many drivers check for
another pending interrupt prior to exiting to the kernel. This technique (for
example, service input interrupt, service pending output interrupt, service next
input interrupt) provides efficient interrupt servicing because it allows the
driver to service multiple interrupts with one call to the IRQ service routine.

/ Clear the carry bit and exit with a RTS instruction after servicing an interrupt.

Avoid exception conditions (for example, a Bus Error) when IRQ service routines are
executing. Under the current version of the kernel, an exception in an IRQ service
routine will crash the system.

NOTE: IRQ service routines may destroy the contents of the following registers only:
do, d1, a0, a2, a3, and a6. You must preserve the contents of all other registers or
unpredictable system errors (system crashes) will occur.

The interrupt categories (control, input, and output) are described in the following
pages.

3-32

0S-9 Technical I/O Manual

Sequential Character File Manager IRQ Service Routine

Control Interrupts

These interrupts are usually associated with non-data type information on the serial
port, such as the receipt of a break character or a change in the Data Carrier line. Con-
trol interrupts may also signal error conditions on the data stream (for example, parity
error).

When signaling is set up for Data Carrier transactions (see SetStat, SS_DCOn,
SS_DCOff), the routine should send the specified signal to the specified process, clear
down the signal condition, mark the path as “lost” (V_HangUp set to non-zero), and
then exit (carry bit clear) or service more interrupts.

Input Interrupts

The input interrupt routine typically performs the following:

Read the character from the hardware, clear down the interrupt, and strip parity
(if required).

| Check character error status. If in error, update V_ERR to indicate the error.

/E If the character is not a NULL character, determine whether or not the character
requires special handling.

a) If the character is the output pause character (V_PCHR), set a pause
request (V_PAUS) in the echo device’s static storage (V_DEV?2).

b) If the character is a keyboard interrupt (V_INTR) or quit character
(V_QUIT), send the appropriate signal to the last process to use the
device (V_LPRC).

c) If the character is a software handshake character (V_XON or
V_XOFF), service the handshake request. For an “output resume” case
(V_XON), this typically involves clearing the “output halted due to X-
OFF” flag, checking for data in the output FIFO, and enabling output
interrupts, if so. For an “output halt” case (V_XOFF), this typically
involves setting the “output halted due to X-OFF” flag and disabling
output interrupts on the hardware.

NOTE: The software handshake characters are consumed by this
routine. After processing these characters, the IRQ service routine exits
to the kernel (carry bit clear) or services the next pending device
interrupt.

0S-9 Technical I/O Manual 3-33

IRQ Service Routine

Sequential Character File Manager

I+

Put the character into the input FIFO buffer. If there is no room in the buffer,
the character is lost and the driver should indicate “input buffer overrun” in the
accumulated error status (V_ERR). In this case, the driver often returns to the
kernel at this point, after waking the driver process (V_WAKE).

Determine if any process has set up a “send signal on data ready” condition
(SS_SSig). If so, signal the process, clear down the signaling condition, and
exit (carry bit clear) or service the next pending interrupt.

Examine the number of characters in the input FIFO, if the driver supports
handshaking.

For software handshaking, if the buffer is nearly full (reached the “high-water
mark’), the driver should send a suspend transmission character (V_XOFF) to
the distant end and flag that input has been halted. This function allows the
driver to prevent input FIFO overrun errors when the data is being received at a
faster rate than it is being read from the FIFO. Typically, the READ routine re-
enables input data flow when it has emptied the input FIFO to a suitable low
value (“low-water mark”) by causing the V_XON character to be sent.

For hardware handshaking, the input interrupt routine should signal its desire to
suspend input by negating its “ready to receive” line.

If desired, the input IRQ service routine can now service more interrupts. Once
fully completed, it should exit to the kernel with the carry bit clear. Prior to
exiting, it should send a wake-up signal (S$Wake) to any waiting driver
process. You can find the process ID in V_WAKE, which you should clear.

Output Interrupts

The output interrupt routine typically performs the following:

Determine if V_XON or V_XOFF is pending, due to input buffer software
handshaking. If so, send the required character, flag it sent, and mark the
current state of input (halted or resumed). The driver should then determine if
output is currently halted (buffer empty or software handshake). If so, it should
disable output interrupts and return to the kernel (carry bit clear). If not, further
interrupts may be processed or an exit may be made to the kernel (carry bit
clear).

Determine if output is halted due to software handshaking. If so, disable output
device interrupts and return to the kernel (carry bit clear).

Determine if any data is waiting in the output FIFO for transmission. If so, write
the data to the hardware.

3-34

0S-9 Technical I/O Manual

Sequential Character File Manager IRQ Service Routine

@ Determine the remaining data count in the output FIFO.

a) If zero, flag the buffer empty, disable output device interrupts, wake any
waiting process (V_WAKE) and exit to the kernel (carry bit clear).

b) If not zero, check if current count is below the output buffer’s “low-
water mark”. If not, exit to the kernel (carry bit clear) without waking
the driver process. If so, wake the driver process before exiting.

This technique minimizes contention between the driver’s WRITE
routine (filling the output buffer) and the output IRQ service routine
(emptying the output buffer), as the buffer is allowed to empty
significantly before the WRITE process is re-activated.

End of Chapter 3

0S-9 Technical I/O Manual 3-35

Sequential Block
File Manager
(SBF)

SBF General Description

The Sequential Block File Manager (SBF) is a re-entrant subroutine package for 1/O service requests to
sequential block-oriented mass storage devices, such as tape systems. SBF can handle any number or type
of such systems simultaneously.

The following 1/O service requests are handled by SBF:

I$Close I$Create I$GetStt I$Open I$Read
ISReadLn I$SetStt I$Write ISWritln

The following 1/0 service requests are not valid for SBF:

I$SChgDir I$Delete I$SMakDir I$Seek
When one of these service requests is made to SBF, an appropriate error code is returned.
The following 1/0 service requests do not call SBF:

I$Attach I$Detach I$Dup

SBF is designed to support both buffered and unbuffered 1/0. It is capable of handling variable logical
block sizes. SBF has no knowledge of the media’s physical block size, and the driver is responsible for
translating the logical block requests by SBF into the media’s physical block requests. The logical block
size for an SBF device is defined in the PD_BIkSiz field of the path descriptor.

0S-9 Technical I/O Manual 4-1

Unbuffered I/O Sequential Block File Manager

Unbuffered I/O
Unbuffered 1/0 is used when the PD_NumBIk field of the path descriptor is set to 0.

When operating in unbuffered mode, SBF uses a single buffer for ISReadLn and I$Writln calls. I$Read
and I$Write calls do not use an intermediate buffer, and the data is transferred directly between the caller’s
data buffer and the driver.

Unbuffered 1/O operates synchronously with the requesting process. The process makes a read or write
request and SBF returns to the caller when the 1/0 operation has completed.

Buffered I/O

Buffered 1/0 is used when the PD_NumBIk field of the path descriptor is set to a positive number. All
buffered 1/0 is initiated asynchronously by an auxiliary process created by SBF. SBF uses a “pool” of
buffers to accomplish this. The maximum number of buffers to use is specified by the PD_NumBlIk field
of the path descriptor. The size of each buffer is specified by the PD_BIkSiz field of the path descriptor.

I$Read requests cause SBF to copy data from the buffer pool. If a full buffer is not yet available, SBF
allocates a new buffer and passes it to the auxiliary process. SBF then waits for the auxiliary process to
return the buffer containing the next block. Multiple buffers (up to the number specified by PD_NumBIk)
may be allocated, thus allowing SBF to copy data from one buffer while the auxiliary process reads data
into others.

I$Write requests cause SBF to copy data into a buffer and return to the user immediately. When a buffer
fills, SBF passes it to the auxiliary process for writing. If another buffer is required before the auxiliary
process has had time to write the previous buffer, SBF allocates a new buffer and copies data to it. This
allows SBF to copy data into one buffer while the auxiliary process writes from others.

Considerations When Writing to Tapes

When an SBF path is opened, any 1/0 operations may be done on the path. However, after an I$Write call
is made, SBF flags the path as “in write mode” and will not allow any I$SRead calls until an 1$SetStt call
is made. Typically, when writing a tape, an 1$Close call follows an I1$Write call and SBF performs its
normal close processing. When an 1$SetStt call follows an I$Write call, SBF waits for any pending
writes to complete, clears the write mode flag, and performs the 1$SetStt. It is recommended that
I$SetStt writes one or more filemarks, to ensure that a filemark follows the data written.

4-2 0S-9 Technical I/O Manual

Sequential Block File Manager End-Of-Tape Processing

End-Of-Tape Processing

There is no “end-of-tape” error on Read requests. Consequently, SBF requires an end-of-file mark to be
present or the user process to handle the situation (to know the size of the file or use an end-of-data record).

I$Write requests return a media full error (E$Full) when end-of-tape is reached. All prior writes will have
completed; no other data may be written other than filemarks after the end-of-tape has been reached.

SBF 1/O Service Requests

When a process makes one of the following system calls to an SBF device, SBF executes the file manager
functions described for that call.

I$Close SBF performs the following functions:
» If the use count for the path is non-zero (other processes are still using this path),

SBF does not return an error.

e If the use count is zero, SBF determines if the path is in write mode. If so, SBF
calls the device driver to write two filemarks to the tape.

» If the path is in write mode and the f_eras_b flag is set in the PD_Flags field of
the path descriptor, SBF calls the device driver to erase to the end of the tape.

o Ifthef_rest b flag is set in PD_Flags, SBF calls the device driver to rewind the
tape. If the path is in write mode and f_rest_b is not set, SBF calls the device driver
to skip back one filemark. This positions the tape between the two filemarks just
written.

o Ifthe f_offl_b flag is set in PD_Flags, SBF calls the device driver to take the tape
drive off-line.

» Any buffers associated with the path are returned to the system.
I$Create SBF considers I$Create to be synonymous with I$Open.

1$GetStt Refer to the I$GetStt description in the OS-9 Technical Manual for a detailed explana-
tion of the SBF-supported I$GetStt functions:

SS_Ready Test for data ready.
SS _EOF Check for end of file condition.

All other GetStat calls are passed to the driver.

0S-9 Technical I/O Manual 4-3

SBF I/O Service Requests Sequential Block File Manager

I$Open

I$Read

I$ReadLn

|$SetStt

[$Write

[$Writln

SBF performs the following functions:

* Validates the pathname.

» Verifies that the drive number (PD_TDrv) is legal for the device driver
(SBF_NDRV).

 Initializes path descriptor variables.

» Creates the auxiliary process for the driver (SBF_DPrc), if required.

SBF calls the driver as needed to read the data. Complete blocks of data are transferred
directly to the user’s buffer while incomplete blocks are transferred into SBF’s buffer. The
portion of the data requested by the calling process is copied into the calling process’
buffer. If buffers are required for the read (for example, buffered 1/0 mode), these are
allocated as required.

I$ReadLn is similar to ISRead, except that SBF stops the read if an end-of-record charac-
ter (carriage return) is found. 1$ReadLn requests always transfer the data through an
intermediate SBF buffer.

Refer to the I$SetStt description in the OS-9 Technical Manual for a detailed explana-
tion of the SBF supported I$SetStt functions:

SS_ Opt Write the path descriptor options.

All other SetStat calls are passed to the driver. If the block size (PD_BIkSiz) has changed,
SBF ensures that all current buffers are flushed prior to calling the device driver. NOTE:
Only SS_Opt is passed to the driver after processing by SBF. If an unknown service re-
quest error (E$UNkSvc) is returned by the driver, it is ignored.

SBF calls the driver as needed to transfer the data as follows:

Buffered I/O

SBF copies the user’s data into the next free buffer in the SBF buffer pool. The user process
is reactivated immediately. As each buffer fills (PD_BIkSiz), SBF calls the driver to write
the data when the driver is available.

Unbuffered 11O

SBF calls the driver with the data pointer pointing to the user’s data buffer. The driver
writes the data to tape; the user process is reactivated when the driver completes the write
operation.

I$Writln is similar to I$Write, except that SBF only writes data up to and including the first
end-of-record character (carriage return), if there is one in the calling process’s buffer. If
no end-of-record character is found, SBF writes the amount of data specified by the calling
process. I1$Writln requests always transfer the data through an intermediate SBF buffer.

4-4

0S-9 Technical I/O Manual

Sequential Block File Manager

SBF Device Descriptor Modules

SBF Device Descriptor Modules

This section describes the definitions of the initialization table contained in device descriptor modules for
SBF devices. The initialization table immediately follows the standard device descriptor module header
fields. The size of the table is defined in the M$Opt field.

Device Path

Descriptor Descriptor

Offset Label Description

$48 PD_DTP Device Type

$49 PD_TDrv Tape Drive Number

$4A PD_SBF Reserved

$4B PD_NumBIk Maximum Number of Blocks to Allocate
$4C PD_BIkSiz Logical Block Size

$50 PD_Prior Driver Process Priority

$52 PD_SBFFlags SBF Path Flags

$53 PD_DrivFlag Driver Flags

$54 PD_DMAMode Direct Memory Access Mode
$56 PD_ScsilD SCSI Controller ID

$57 PD_ScsiLUN LUN on SCSI Controller
$58 PD_ScsiOpts SCSI Options Flags

NOTE: In this table the offset values are the device descriptor offsets, while the labels are the path
descriptor offsets. To correctly access these offsets in a device descriptor using the path descriptor labels,
the following adjustment must be made: (M$DTyp - PD_OPT).

For example, to access the tape drive number in a device descriptor, use the following value:

PD_TDrv

+ (M$DTyp - PD_OPT). To access the tape drive number in the path descriptor, use PD_TDrv. Module
offsets are resolved in assembly code by using the names shown here and linking with the relocatable

library: sys.l or usr.l.

0S-9 Technical I/O Manual

4-5

SBF Device Descriptor Modules Sequential Block File Manager

Name

Description

PD DTP

PD_TDrv

PD_NumBIk

PD_BIkSiz

PD_Prior

PD_SBFFlags

Device class
This field is set to three for SBF devices.

Tape Drive number

Used to associate a one-byte integer with each drive that a controller will handle. If
using dedicated (for example, non-SCSI bus) controllers, this field usually defines both
the logical and physical drive number of the tape drive. If using tape drives connected
to SCSI controllers, this number defines the logical number of the tape drive to the
device driver. The physical controller ID and LUN are specified by the PD_ScsilD
and PD_ScsiLUN fields. Each controller’s drives should be numbered 0 to n-1 (n is
the maximum number of drives the controller can handle). This number also defines
how many drive tables are required by the driver and SBF. SBF verifies this number
against SBF_NDRYV prior to calling the driver.

Number of Buffers/Blocks Used For Buffering
Specifies the maximum number of buffers to be allocated by SBF for use by the
auxiliary process in buffered 1/0. If this field is set to 0, unbuffered 1/O is specified.

Logical Block Size Used For I/O

Specifies the size of the buffer to be allocated by SBF. This buffer size is used when
allocating multiple buffers used in buffered 1/0. Unless the driver manages partial
physical blocks, this size should be an integer multiple of the physical tape block size.

Driver Process Priority
The priority at which SBF’s auxiliary process will run. This value is used during
initialization. Changing this value after initialization has no effect.

SBF Path Flags
Specifies the actions that SBF takes when the path is closed. A user can update this
field using GetStat/SetStat (SS_Opt). SBF supports the following flag definitions:

bit 0: (f_rest_b) 0= No rewind on close.
1 = Rewind on close.

bit 1: (f_offl_b) 0= Do not put drive off-line on close.
1 = Put drive off-line on close.

bit 2: (f_eras_b) 0= Do not erase to end-of-tape on close.
1 = Erase to end-of-tape on close.

4-6

0S-9 Technical I/O Manual

Sequential Block File Manager SBF Device Descriptor Modules

Name

Description

PD_DrivFlag

PD_DMAMode

PD_ScsilD

PD_ScsiLUN

PD_ScsiOpts

Driver Flags
This field is available for use by the device driver.

NOTE: References to these flags are often made using the PD_Flags offset (defined
in sys.l and usr.l). This reference is equivalent to PD_SBFFlags. References to
PD_DrivFlag should use a value of PD_Flags + 1.

Direct Memory Access Mode
This field is hardware specific. If available, you can use this word to specify the DMA
Mode of the driver.

SCSI Controller ID
This is the ID number of the SCSI controller attached to the device. The driver uses
this number when communicating with the controller.

Logical Unit Number of SCSI Device

This number is the value to use in the SCSI command block to identify the logical unit
on the SCSI controller. This number may be different from PD_TDrv, to eliminate
allocation of unused drive table storage. PD_TDrv indicates the logical number of the
drive to the driver and SBF (drive table to use). PD_ScsiLUN is the physical drive
number on the controller.

SCSI Driver Options Flags
This field allows SCSI device options and operation modes to be specified. It is the
driver’s responsibility to use or reject these if applicable:

bit0: 0= ATN not asserted (no disconnects allowed).
1 = ATN asserted (disconnects allowed).

bit 1: 0 = Device cannot operate as a target.
1 = Device can operate as a target.

bit 2: 0 =asynchronous data transfers.
1 = synchronous data transfers.

bit 3: 0 = parity off.
1 = parity on.

All other bits are reserved.

0S-9 Technical I/O Manual 4-7

SBF Path Descriptor Definitions

Sequential Block File Manager

SBF Path Descriptor Definitions

The reserved section (PD_OPT) of the path descriptor used by SBF is copied directly from the
initialization table of the device descriptor. The following table is provided to show the offsets used in the
path descriptor. For a full explanation of the path descriptor fields, refer to the previous pages.

Offset Name Description

$80 PD_DTP Device Type

$81 PD_TDrv Tape Drive Number

$82 PD_SBF Reserved

$83 PD_NumBIk Maximum Number of Blocks to Allocate
$84 PD_BIkSiz Logical Block Size

$88 PD_Prior Driver Process Priority

$8A PD_SBFFlags* SBF Path Flags

$8B PD_DrivFlag* Driver Flags

$8C PD_DMAMode Direct Memory Access Mode
$8E PD_ScsilD SCSI Controller ID

$8F PD_ScsiLUN LUN on SCSI controller

$90 PD_ScsiOpts SCSI Options Flags

* References to these flags are often made using the PD_Flags offset (defined in sys.l and usr.l).
This reference is equivalent to PD_SBFFlags. References to PD_DrivFlag should use a value of
PD_Flags + 1.

NOTE: Offset refers to the location of a path descriptor field relative to the starting address of the path
descriptor. Path descriptor offsets are resolved in assembly code by using the names shown here and
linking the module with the relocatable library: sys.| or usr.l.

4-8

0S-9 Technical I/O Manual

Sequential Block File Manager SBF Device Drivers

SBF Device Drivers

SBF device drivers are designed to support any sequential storage device which reads and writes data in
fixed or variable size blocks (tapes).

Because SBF is intended for sequentially accessed files, it does not support a directory structure or provide
a byte-oriented file positioning mechanism. Consequently, I$Makdir, I$ChgDir, I1$Delete, and 1$Seek
return the error E3UnkSvc.

Read and write calls to the driver are made by SBF in terms of logical blocks. The logical block size is
specified in the PD_BIkSiz field of the path descriptor. The driver is responsible for translating the block
request into the appropriate number of physical media blocks. If a "partial” physical block results from
this translation, drivers must either buffer the partial block or return an error.

GetStat calls are passed straight to the driver, with the exception of SS_EOF and SS_Ready, which are
handled by SBF. Typical drivers ignore all GetStat calls and return an unknown service request error
(E$UnkSvc).

SetStat calls are passed straight to the driver, with the exception of SS_Opt. SBF determines if the buffer
size has changed, and if so, flushes any pending buffers to tape prior to calling the driver. SetStat calls
to the driver are used for control and positioning operations (for example, write filemark, rewind tape) on
the media. These calls can originate from the user or from SBF internal operations (for example, write
filemark when file closed).

Sensing the End-of-Tape

All tape drives can sense the physical end-of-tape (EOT). Many drives also provide an “early” EOT
warning. The type of warning(s) provided by the drive determines whether or not buffered 1/0
(PD_NumBIk) is usable, as follows:

Early EOT Warning

Drives which provide an early EOT capability notify the driver of the EOT condition prior to
reaching the end of the physical tape. The amount of tape between the early EOT mark and
physical tape end varies among drive models; however, typical drives allow about 1000 physical
blocks to be written after the early EOT warning.

When a driver that is writing blocks encounters the early EOT warning, it should write the blocks
to the tape and return a media full error (E$Full). If the device is using buffered 1/0, subsequent
write calls may still be made by SBF to the driver to flush all currently buffered blocks to the tape.
The driver should not refuse these write requests: it should continue to write the data to tape and
continue returning ESFull.

0S-9 Technical I/O Manual 4-9

Sensing the End-of-Tape Sequential Block File Manager

The driver should maintain this mode of operation until a “control”” operation occurs (for example,
write filemark or rewind), at which time the driver can clear its EOT status. This technique of
writing all currently buffered blocks to tape ensures that the application knows which blocks are
on which tape.

When setting up the device descriptors block size (PD_BIkSiz) and buffer count (PD_NumBIKk),
you should ensure that there is enough room on the tape after the early EOT mark to accommodate
the total amount of data that could be buffered (PD_NumBIk * PD_BIkSiz).

Drives which provide early EOT warning can operate in buffered or unbuffered 1/0 mode.

Physical EOT Warning

Drives which only provide a physical EOT warning notify the driver when the actual end-of-tape
is about to be reached. There is sufficient tape remaining to allow the last write to complete and a
filemark to be written. No additional blocks can be written to the tape.

You can only operate physical EOT devices in unbuffered 1/0 mode, because there is no guarantee
that you can write SBF-buffered blocks to tape after the physical EOT is detected. When the driver
detects EOT, it should ensure that the last write has completed and return a media full error
(E$Full). The next access to the driver is typically a write filemark operation and rewind.

4-10

0S-9 Technical I/O Manual

Sequential Block File Manager Tape Positioning Operations

Tape Positioning Operations

SetStat functions are available to allow tape positioning operations. These calls allow the driver to skip
forward or backward on the tape, using a specified block or filemark count.

Depending upon the capabilities of the tape drive in use, reverse tape movement may require driver
assistance. If the tape drive supports reverse movement, the driver simply hands the count to the drive. If
the tape drive only supports forward movement, the driver has to maintain counters for the current filemark
and block position on the tape. The driver must use movement commands supported by the tape drive to
simulate reverse movement. For example, if the tape’s current position is filemark #2, block #20, then a
request to move back five blocks would (typically) be simulated by:

Rewind tape
! Skip forward two filemarks
A Skip forward 15 blocks

When this situation is in effect, drivers maintain these tape position counters in an external module (for
example, data module), so that the counters are not erased when the device is attached and detached. The
INIT routine attempts to create and link to the module, while the TERM routine unlinks the module.

Some tape motion commands (for example, rewind, skip blocks, retension) may take a long time. When
using SCSI tape drives, these types of functions can busy the SCSI bus to other users for excessive lengths
of time. To improve this situation, drivers should follow these guidelines:

» If possible, set the “immediate return” flag in the SCSI command packet, to enable the tape
drive to return status without waiting for motion to complete.

» If possible, implement disconnect/reconnect, to enable the tape drive to release the bus during
long motion functions, allowing other SCSI activity (such as disk accesses) to occur.

0S-9 Technical I/O Manual 4-11

Tape Streaming Sequential Block File Manager

Tape Streaming

Tape “streaming” is achieved when the process and driver are able to send/receive data to/from the tape
device at a rate that is equal to or faster than the tape drive’s data 1/O rate. The tape drive can keep the
tape in motion continuously, thus achieving the minimum data transfer time. If the data rate falls below
this threshold, the tape drive has to perform stop-motion/reverse/start-motion functions whenever it has to
wait for the process/driver to issue the next 1/0 request. This stop/start motion can significantly increase
the time it takes for the overall tape operations.

To achieve maximum streaming on tapes, drivers should follow these guidelines:

Use buffered 1/0 (PD_NumBIKk) on tape drives that support early EOT detection.

Set the logical block size (PD_BIkSiz) to the size of the tape drive’s internal buffer (typical
tape drives have an internal buffer to assist streaming).

If the tape drive supports “immediate returns” on writes, turn this function on. Immediate
returns allow the tape drive’s controller to indicate “command complete” to the driver when
the data is in the controller’s internal buffer, but prior to writing the data to physical tape. The
controller then begins writing to tape while SBF is preparing for the next write.

On SCSI-based systems, implement disconnect/reconnect if possible, so that tape operations
minimize SCSI bus occupancy. This allows situations such as SCSI-disk to SCSI-tape backups
to achieve maximum overlaps of disk/tape activity.

4-12

0S-9 Technical I/O Manual

Sequential Block File Manager SBF Device Driver Storage Definitions

SBF Device Driver Storage Definitions

SBF device driver modules contain a package of subroutines that perform block-oriented 1/0 to or from
a specific hardware controller. Because these modules are re-entrant, one “copy” of the module can
simultaneously run several identical 1/O controllers.

The kernel allocates a static storage area for each device (which may control several drives). The size of
the storage area is given in the device driver module header (M$Mem). Some of this storage area is
required by the kernel and SBF; the device driver may use the remainder in any manner. Information on
device driver static storage required by the operating system can be found in the sbfdev.a and sbfdrvtb.a
DEFS files. Static storage is used as follows:

Offset Name Maintained By Description

$00 V_PORT Kernel Device base address
$04 V_LPRC Kernel Last active process ID
$06 V_BUSY File Manager Active process ID

$08 V_WAKE Driver Process ID to awaken
$0A V_Paths Kernel Linked list of open paths
$O0E Reserved

$30 SBF_NDRV Driver Number of Drives

$32 SBF_Flag File Manager Driver Flags

$34 SBF_Drvr File Manager Driver Module Pointer
$38 SBF_DPrc File Manager Driver Process Pointer
$3C SBF_IPrc Driver Interrupt Process Pointer
$40 Reserved

$80 Drive Tables Begin

NOTE: Offset refers to the location of a static storage field relative to the starting address of the static
storage. Offsets are resolved in assembly code by using the names shown here and linking the module
with the relocatable library: sys.l.

Name Description

V_PORT Device port address
Contains the device’s physical port address. It is copied from M$Port in the device
descriptor when the device is attached by the kernel.

V_LPRC Last active process ID

Contains the process ID of the last process to use the device. While this field is required
for all static storage by the kernel, it is not used by SBF.

0S-9 Technical I/O Manual 4-13

SBF Device Driver Storage Definitions Sequential Block File Manager

Name Description

V_BUSY Current active process
The process ID of the process currently using the device. It is used to implement 1/0
Blocking by SBF. This field is also used by the interrupt drivers when they wish to
suspend themselves, by copying V_BUSY to V_WAKE (prior to suspending
themselves). A value of zero indicates the device is not busy.

V_WAKE Process ID to awaken
The process ID of any process that is waiting for the device to complete 1/0. A value
of zero indicates that no process is waiting. The driver sets V_WAKE from V_BUSY.
V_WAKE provides the interlock between the driver and the driver’s interrupt service
routine.

V_PATHS Linked List of Open Paths
A singly-linked list of all paths currently open on this device.

SBF_NDRV Number of drives
Contains the number of drives that the controller can use. It is defined by the device
driver as the maximum number of logical drives with which the controller can work.
SBF assumes that there is a drive table for each drive. SBF validates the tape drive
number (PD_TDrv) against this value to ensure that the logical drive number is valid
for the driver.

SBF_Flag Driver Flags
Contains flags used by SBF to indicate the current state of the path.

SBF_Drvr Driver Module Pointer
Contains the pointer to the device driver.

SBF _DPrc Driver Process Pointer

Contains the pointer to the process associated with the driver. SBF initializes this when
a path is opened to the device. The driver’s TERM routine should check this field, and
if non-zero, delete the process (F$DelPrc).

SBF_IPrcinterrupt Process Pointer (obsolete)

This field is available for the driver to use when the driver wishes to create its own
process (for example, interrupt handler process). NOTE: Do not confuse this process
with the SBF process created for buffered 1/0. (See SBF_DPrc.)

Drive Tables
Contains one table per drive that the controller will handle. SBF assumes there are as
many tables as specified in SBF_NDRV.

4-14

0S-9 Technical I/O Manual

Sequential Block File Manager

Device Driver Tables

Device Driver Tables

There must be as many drive tables as were specified in SBF_NDRYV. The format of each drive table is

given below:
Offset Name Maintained By Description
$00 SBF_DFlg File Manager Drive Flag
$02 SBF_NBuf File Manager Buffer Count
$04 SBF_IBH File Manager Pointer to Head of Input Buffer List
$08 SBF_IBT File Manager Pointer to Tail of Input Buffer List
$0C SBF_OBH File Manager Pointer to Head of Output Buffer List
$10 SBF_OBT File Manager Pointer to Tail of Output Buffer List
$14 SBF_Wait File Manager Pointer to Waiting Process
$18 SBF_SEtrr Driver Number of Recoverable Errors
$1C SBF_HEtrr Driver Number of Non-Recoverable Errors
$20 Reserved
Name Description
SBF_DFlg Drive Flag
The high byte of this field contains the current status of the logical drive. The flags are
maintained by SBF, and are defined as follows:
bit 1: Set if write mode.
bit 2: Set if driver servicing this drive.
bit 3: Set if EOF (end of file).
All other bits and the low byte bits are reserved.
SBF_NBuf Buffer Count
Contains the number of buffers currently allocated to the drive.
SBF_IBH Pointer to Head of Input Buffer List
SBF_IBT Pointer to Tail of Input Buffer List
These fields contain the head and tail pointers, respectively, of the buffers being
returned to SBF by the driver.
SBF_OBH Pointer to Head of Output Buffer List
SBF_OBT Pointer to Tail of Output Buffer List

These fields contain the head and tail pointers, respectively, of the buffers being sent to
the driver by SBF.

0S-9 Technical I/O Manual 4-15

Device Driver Tables Sequential Block File Manager

Name

Description

SBF_Wait

SBF_SErr

SBF_HEtrr

User process’ process descriptor pointer
This pointer is set when the user process is suspended, waiting for driver 1/0 to
complete.

Number of Recoverable Errors

This field allows the driver to keep a count of “soft” errors during 1/0O operations. The
value would typically be returned by a SS_ELog GetStat call. After reading this
value, it is typically reset to zero.

Number of Non-Recoverable Errors

This field allows the driver to keep a count of “hard” errors during 1/0 operations. The
value would typically be returned by a SS_ELog GetStat call. After reading this
value, it is typically reset to zero.

4-16

0S-9 Technical I/O Manual

Sequential Block File Manager Linking SBF Drivers

Linking SBF Drivers

After a SBF driver has been assembled into its relocatable object file (ROF), the driver needs to be linked
to produce the final driver module. Linking resolves all code references in drivers that are comprised of
several ROF files. It also resolves the external data and static storage references by the driver.

The most important part of linking is to correctly resolve the static storage references. Generally, the static
storage area is composed of three sections in this order (see Figure 4-1):
I/0 globals
| Drive tables (one per logical drive)
/& Driver-declared variables
The driver-declared variables are declared in vsect areas of the driver, but they must be allocated after the
drive table storage areas. The method that must be used to allocate all of the storage, in the correct order,

is to link the sbfstat.r library file, ‘n’ instances of sbfdrvtb.r, and then the driver vsect. The sbfstat.r and
sbfdrvtb.r files are located in the system’s LIB directory.

The following examples show how a driver should be linked. The first link line creates a driver that
supports one logical drive, as only one drive table vsect is allocated:

168 /dd/L1B/sbfstat.r /dd/LIB/sbfdrvth.r RELS/sbviper.r -O=0BJS/sbviper

The second link line creates a driver that supports two logical drives, as two drive table vsects are
allocated:

168 /dd/LI1B/sbfstat.r /dd/LIB/sbfdrvtb.r /dd/LIB/sbfdrvtb.r RELS/sbtape.r
-O=0BJS/sbtape

NOTE: Failure to link the 1/O system globals and the correct number of drive tables, and in the correct
order, results in erratic driver operation.

0S-9 Technical I/O Manual 4-17

SBF Static Storage Layout

Sequential Block File Manager

High Memory +

Kernel I/O Globals

Low Memory +

iodev.a (sbfdev.a)

DEFS File LIB File
Driver-declared N/A N/A
Storage (vsect)
SBF Drive Tables
(‘n’ copies, where n is sbfdrvtb.a sbfdrvtb.r
the maximum number
of drives)
SBF 1/O Globals sbfdev.d (sbfdev.a)
sbfdev.r

Figure 4-1: SBF Static Storage Layout

4-18

0S-9 Technical I/O Manual

Sequential Block File Manager SBF Device Driver Subroutines

SBF Device Driver Subroutines

As with all device drivers, SBF device drivers use a standard executable memory module format with a
module type of Drivr (code $EOQ). SBF drivers are called in system state.

NOTE: 1/0 system modules must have the following module attributes:

* They must be owned by a super-user (0.n).

» They must have the system-state bit set in the attribute byte of the module header. (OS-9 does
not currently make use of this, but future revisions will require that 1/0 system modules be
system-state modules.)

The execution offset address in the module header points to a branch table that has seven entries. Each
entry is the offset of the corresponding subroutine. The branch table appears as follows:

ENTRY dc.w INIT initialize device
dc.w READ read character
dc.w WRITE write character
dc.w GETSTAT get device status
dc.w SETSTAT set device status
dc.w TERM terminate device
dc.w TRAP handle illegal exception (0 = none)

Each subroutine should exit with the carry bit of the condition code register cleared, if no error occurred.
Otherwise, the carry bit should be set and an appropriate error code returned in the least significant word
of register d1.w.

The TRAP entry point is currently not used by the kernel, but in the future will be defined as the offset to
error exception handling code. Because no handler mechanism is currently defined, this entry point should
be set to zero to ensure future compatibility.

The following pages describe each subroutine.

0S-9 Technical I/O Manual 4-19

INIT

Sequential Block File Manager

INIT Initialize Device and its Static Storage

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(al) = address of the device descriptor module
(a2) = address of device static storage

(ad) = process descriptor pointer

(a6) = system global data pointer

None

cc = carry bit set
dl.w = error code

The INIT routine must:

Initialize the device’s permanent storage. Minimally, this consists of
initializing SBF_NDRYV to the number of drives with which the controller will
work.

If the driver maintains flags/variables that must “span” detach/attach sequences
(for example, for reverse movement simulation), then the INIT routine should
create/link to an external module (for example, a data module). The module
pointer should then be saved. If the module was created, its storage area should
then be initialized.

| Place the IRQ service routine on the IRQ polling list by using the F$SIRQ
service request, if required.

/ Initialize device control registers (enable interrupts if necessary).

Prior to being called, the device permanent storage is cleared (set to zero) except for
V_PORT which will contain the device address.

If INIT returns an error, it does not have to clean up its operation (for example, remove
device from polling table or disable hardware). The kernel calls TERM to allow the
driver to clean up INIT’s operation before returning to the calling process.

NOTE: If the INIT routine causes an interrupt to occur, handle the interrupt in one of
two ways:

Process the interrupt directly by masking interrupts to the level of the device,
polling/servicing the device hardware, then restoring the previous interrupt
level. This is the preferred technique unless the interrupt is time-consuming.

4-20

0S-9 Technical I/O Manual

Sequential Block File Manager INIT

! Allow the interrupt service routine to service the hardware. In this case, the
process descriptor contains the process ID (P$ID) to which V_WAKE should
be set. You cannot use V_BUSY because it is zero when INIT is called.

0S-9 Technical I/O Manual 4-21

READ

Sequential Block File Manager

READ Read Block(s)

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

d0.1 = buffer size

(a0) = address of buffer

(a2) = address of device static storage
(a3) = drive table

(ad) = process descriptor pointer

(a6) = system global data storage pointer

d1.l = block size read

cc = carry bit set
d1l.w =error code

The READ routine must:
Initialize the drive, if required.

I Convert the requested byte-count into the block-count for the media. If the
requested count does not specify an integral number of media blocks, the driver
should return an error (typical case) or take steps to buffer the partial block.

/ Issue the READ command to the device and wait for I/O to complete (using
interrupts if possible).

@ When the 1/O operation is complete, check the status of the READ. If a fatal
error occurred, return it to SBF.

x If no error, or a non-fatal error occurred, check the amount of data actually read
and return that count to SBF.

Most tape devices terminate a READ request when a filemark is encountered.
The tape device returns the data from the current position up to the filemark.
Thus, the byte-count returned may be less than the requested amount. This is a
typical non-fatal error on tape devices.

4-22

0S-9 Technical I/O Manual

Sequential Block File Manager WRITE

Wizdl= Write Block(s)

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

d0.1 = buffer size

(a0) = address of buffer

(a2) = address of the device static storage area
(a3) = drive table

(ad) = process descriptor pointer

(a6) = system global data storage pointer

The buffer is written to tape.

cc = carry bit set
d1l.w =error code

The WRITE routine must:
Initialize the drive, if required.

i Convert the requested byte-count into the block-count for the media. If the
requested count does not specify an integral number of media blocks, then the
driver should return an error (typical case) or take steps to buffer the partial
block.

A Issue the WRITE command to the device and wait for 1/0 to complete (using
interrupts if possible).

@ When the 1/0 operation has completed, check the status of the WRITE. If a
fatal error occurred, return it to SBF.

x If no error, or a non-fatal error occurred, check the amount of data actually
written.

Many tape devices terminate a write request when an early end-of-tape (EOT) is
detected. For these types of devices, the data can still be written to tape because the
EOT state is a warning that there is a small amount of tape remaining. The driver
should ensure that this write is fully completed, and return a media full error (E$Full).

Subsequent write calls should not be refused at this point, as SBF may need to flush its
current buffers (if in buffered 1/0 mode) to the tape. The application is notified of the
media full condition on its next write, so that it may close the file. When the file closes,
SBF issues appropriate SetStats (for example, write filemark) to finalize tape
operation.

0S-9 Technical I/O Manual 4-23

WRITE Sequential Block File Manager

If the tape device is one which only detects a physical EOT condition, then the driver
should only be operated in unbuffered 1/0 mode. In this case, the driver should ensure
that the write invoking the physical EOT condition is written to tape and a media full
error (E$Full) returned to SBF. No further writes should be presented to the driver, as
the application is notified immediately of the media full condition. The application can
then close the path, allowing SBF to write the final filemark and finalize tape operation.

4-24 0S-9 Technical I/O Manual

Sequential Block File Manager GETSTAT/SETSTAT

GETSTAT/SETSTAT Get/Set Device Status

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

d0.w = status code

d2.l = argument count

(al) = address of the path descriptor

(a2) = address of the device static storage area
(a3) = drive table

(ad) = process descriptor pointer

(a6) = system global data storage pointer

Depends on the function code

cc = carry bit set
d1l.w =error code

These routines are wild-card calls used to get/set the device’s operating parameters as
specified for the 1$GetStt and 1$SetStt service requests.

Calls which involve parameter passing require the driver to examine or change the
register stack variables. These variables contain the contents of the MPU registers at
the time the I$GetStt/I$SetStt request was made. Parameters passed to the driver are
set up by the caller prior to using the service call. Parameters passed back to the caller
are available when the service call completes. The register stack image pointer is stored
in the path descriptor (PD_RGS).

Typical SBF drivers have routines to handle the following 1$SetStt codes:

SS Feed Erase tape

SS_Opt Write path options section
SS_Reset Rewind tape

SS_Reten Retension tape

SS RFM Skip past tape mark(s)
SS_Skip Skip block(s)

SS _SQD Place drive off-line
SS_WFKM Write tape mark(s)

Usually all 1$GetStt codes and other I$SetStt codes return with an unknown service
request error (E$UnkSvc).

The following pages describe the driver’s role in the implementation of the above
I$SetStt calls.

0S-9 Technical I/O Manual 4-25

GETSTAT/SETSTAT

Sequential Block File Manager

SS Feed

SS_Opt

SS_Reset

This call erases all or part of the tape. The number of blocks to be erased
is passed in register d2. If the count is -1, the entire tape is to be erased
from the current position to end-of-tape (EOT), otherwise, the specified
count of blocks should be written, starting at the current tape position.

The erase routine should:

X

Initialize the drive, if required.

Issue the appropriate command to achieve the desired erase
function. Many tape devices support a direct “erase” command.
If the tape device does not support this feature, the driver should
perform “writes” to simulate the desired effect. Once the
command is issued, the driver should wait for 1/0 to complete
(with interrupts if possible).

Check the status of the 1/0O command and return any error to
SBF.

If the driver maintains flags pertaining to current tape position,
these should be updated.

Return status to SBF.

This routine is called when the path descriptor options are changed by
the user. Typically, the driver ignores this call.

This call rewinds the tape to beginning-of-tape (BOT). The rewind
routine should:

Initialize the drive, if required.

Issue the appropriate command to the device and wait for 1/0 to
complete (with interrupts, if possible).

Check the status of the 1/0O command and return any error to
SBF.

If the driver maintains internal flags pertaining to current tape
position, they should be reset. Typical flags would be end-of-
file and end-of-tape. For drivers that count current
filemark/block positions, these counters should also be cleared.

Return status to SBF.

4-26

0S-9 Technical I/O Manual

Sequential Block File Manager

GETSTAT/SETSTAT

SS Reten

SS_RFM

SS_Skip

SS_SQD

SS_WFM

This call performs a retension pass on the tape. Typically, the tape
moves to BOT, moves to EOT, then rewinds to BOT. The sequence of
actions for SS_Reten is the same as that for SS_Reset.

Retensioning tape media is highly recommended for new media,
shipped media, or any media that has been stored for a long period.

This routine is called when the tape position is to be moved forward or
backwards by the specified number of filemarks. (This number is
passed in register d2.) If the tape device is incapable of directly
skipping backward, the driver has to simulate the reverse movement
using rewind and skip forward commands. The sequence of actions for
SS_RFM is the same as that for SS_SQD.

This routine is called when the tape position is to be moved forward or
backward the specified number of tape blocks. The number of blocks to
skip is passed as a logical block count (PD_BIkSz) in register d2. The
driver must translate this count into the media’s physical block count. If
the tape is incapable of directly skipping backward, it has to simulate the
reverse movement using rewind and skip forward commands.

The sequence of actions for SS_Skip is the same as that for SS_SQD.

This routine is called to unload the tape (put the tape device off-line).
Depending upon the capabilities of the tape device, this action may turn
off the drive-select LED, or unload and eject the media.

The unload routine should:
Initialize the drive, if required.

| Issue the appropriate command to the device and wait for 1/0 to
complete (with interrupts, if possible).

/ Check the status of the 1/O command and return any error to
SBF.

@ If the driver maintains flags pertaining to current tape position,
these should be updated.

x Return status to SBF.

This routine is called to write the specified number of filemarks to the
tape. (This number is passed in register d2.) Applications may place
filemarks on the tape as they see fit. The sequence of actions for
SS_WHFM is the same as that for SS_SQD.

0S-9 Technical I/O Manual

4-27

TERM

Sequential Block File Manager

TERM Terminate Device

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(al) = address of the device descriptor module
(a2) = address of device static storage area
(ad) = process descriptor pointer

(a6) = system global static storage

None

cc =carry set
dl.w =error code

This routine is called when a device is no longer in use in the system (see I1$Detach).
The TERM routine must:
Wait until any pending 1/O has completed.
| Disable the device interrupts.

Remove the device from the IRQ polling list.

ST

Kill the driver process created by SBF. If SBF_DPrc is non-zero, this is a
pointer to the driver’s process descriptor. This process is returned by making a
F$DelPrc system call with the process ID from P$ID.

x |If the driver maintains flags/variables that must “span” detach/attach sequence,
then the TERM routine should unlink any external modules linked to during
INIT.

NOTE: Ifan error occurs during the device’s INIT routine, the kernel calls the TERM
routine to allow the driver to clean up. If the TERM routine uses static storage variables
(for example, interrupt mask values, dynamic buffer pointers), it should validate these
variables prior to using them. The INIT routine may not have set up all the variables
prior to exiting with the error.

4-28

0S-9 Technical I/O Manual

Sequential Block File Manager IRQ Service Routine

IRQ Service Routine Service Device Interrupts

INPUT:

OUTPUT:

ERROR
OUTPUT:

FUNCTION:

(a2) = static storage address
(a3) = port address
(a6) = system global static storage

None

cc = carry set (interrupt not serviced)

This routine is called directly by the kernel’s IRQ polling table routines. Its function is
to:

Check the device for a valid interrupt. If the device does not have an interrupt
pending, the carry bit must be set and the routine exited with an RTS instruction
as quickly as possible. Setting the carry bit signals the kernel that the next
device on the vector should have its IRQ service routine called.

! Service device interrupts.
/E Wake up the driver mainline, using the synchronization method of the driver:

Signals: Send a wake-up signal to the process whose process ID is in
V_WAKE, when the I/O is complete. Also, clear V_WAKE as
a flag to the mainline program that the IRQ has occurred.

Events: Signal the event that the IRQ has occurred, using the event
system’s signal function.

@ Clear the carry bit and exit with an RTS instruction after servicing an interrupt.

Avoid exception conditions (for example, a Bus Error) when IRQ service routines are
executing. Under the current version of the kernel, an exception in an IRQ service
routine will crash the system.

NOTE: IRQ service routines may destroy the contents of following registers only: dO,
d1, a0, a2, a3, and a6. The contents of all other registers must be preserved or
unpredictable system errors (system crashes) will occur.

End of Chapter 4

0S-9 Technical I/O Manual 4-29

IRQ Service Routine Sequential Block File Manager

4-30 0S-9 Technical I/O Manual

Sequential Block File Manager IRQ Service Routine

0S-9 Technical I/O Manual 4-31

NOTES Sequential Block File Manager

NOTES

4-32 0S-9 Technical I/O Manual

	Device Drivers That Control Multiple Devices
	Simple Devices
	Multi-Port Devices
	Multi-Class Devices
	Hardware Configuration
	Software Configuration:
	Example One
	Example Two
	Example Three

	Interrupt Driven I/O
	DMA I/O and System Caches
	Syscache Module
	Init Module
	Avoiding Stale Data Problems

	Address Translation and DMA Transfers
	Device Driver Modules
	Driver Module Format

	The Kernel and I/O
	Kernel I/O Service Requests

	Device Descriptor Modules
	Path Descriptors
	File Managers
	File Manager Organization
	File Manager I/O Service Requests

	RBF General Description
	Random Block File Manager (RBF)
	RBF I/O Service Requests

	RBF Device Descriptor Modules
	RBF Path Descriptor Definitions
	Main Driver Types
	RBF Device Driver Storage Definitions
	Device Driver Tables
	Linking RBF Drivers
	RBF Device Driver Subroutines
	INIT Initialize Device and its Static Storage Area

	SCF General Description
	SCF Line Editing

	SCF I/O Service Requests
	When a process makes one of the following system calls to a SCF device, SCF executes the file man...
	I$Close SCF performs the following functions:
	I$Create SCF considers this system call synonymous with I$Open.
	I$GetStt The SS_Opt GetStat function is supported by SCF. It is passed to the driver to enable th...
	Refer to the I$GetStt system call description in the OS-9 Technical Manual for specific informati...
	I$Open SCF performs the following functions:
	I$Read I$Read requests read input from the device without modifying the data. The read terminates...
	• The requested number of bytes has been read.
	• An end-of-record character is detected (PD_EOR).
	• An end-of-file (PD_EOF) is detected as the first character of the read.
	• An error occurs.
	You have control over the method of transfer in the following ways:
	I$ReadLn I$ReadLn requests read input from the device and may edit the data. The read terminates ...
	• An end-of-record character is detected (PD_EOR).
	• An end-of-file (PD_EOF) is detected as the first character of the read.
	• An error occurs.
	If the end-of record character is not encountered before the requested number of bytes has been r...
	NOTE: Never use I$ReadLn on a path that has its end-of-record (PD_EOR) function disabled, as I$Re...
	I$SetStt The SS_Opt SetStat function is supported by SCF. After SCF updates the path descriptor o...
	Refer to the I$SetStt system call description in the OS-9 Technical Manual for specific informati...
	I$Write I$Write requests output data to the device without modifying the data being passed. The w...
	I$Writln I$Writln is similar to I$Write except that I$Writln writes data until an end-of-record c...

	SCF Device Descriptor Modules
	Device Path Descriptor Descriptor Offset Label Description
	$48 PD_DTP Device Type
	$49 PD_UPC Upper Case Lock
	$4A PD_BSO Backspace Option
	$4B PD_DLO Delete Line Character
	$4C PD_EKO Echo
	$4D PD_ALF Automatic Line Feed
	$4E PD_NUL End Of Line Null Count
	$4F PD_PAU End Of Page Pause
	$50 PD_PAG Page Length
	$51 PD_BSP Backspace Input Character
	$52 PD_DEL Delete Line Character
	$53 PD_EOR End Of Record Character
	$54 PD_EOF End Of File Character
	$55 PD_RPR Reprint Line Character
	$56 PD_DUP Duplicate Line Character
	$57 PD_PSC Pause Character
	$58 PD_INT Keyboard Interrupt Character
	$59 PD_QUT Keyboard Abort Character
	$5A PD_BSE Backspace Output
	$5B PD_OVF Line Overflow Character (bell)
	$5C PD_PAR Parity Code, # of Stop Bits, and # of Bits/Character
	$5D PD_BAU Adjustable Baud Rate
	$5E PD_D2P Offset To Output Device Name
	$60 PD_XON X-ON Character
	$61 PD_XOFF X-OFF Character
	$62 PD_TAB Tab Character
	$63 PD_TABS Tab Column Width
	Name Description
	Name Description
	Name Description
	0 = no parity 1 = odd parity 3 = even parity
	Bits two and three indicate the number of bits per character as follows:
	0 = 8 bits/character 1 = 7 bits/character 2 = 6 bits/character 3 = 5 bits/character
	Bits four and five indicate the number of stop bits as follows:
	0 = 1 stop bit 1 = 1 1/2 stop bits 2 = 2 stop bits
	Bits six and seven are reserved.
	Name Description

	SCF Path Descriptor Definitions
	The first 27 fields of the path options section (PD_OPT) of the SCF path descriptor are copied di...
	The fields can be examined or changed using the I$GetStt and I$SetStt service requests or the tmo...
	You may disable the SCF editing functions by setting the corresponding control character value to...
	NOTE: Full definitions for the fields copied from the device descriptor are available in the prev...
	Name Description
	Offset Name Description
	$80 PD_DTP Device Type
	$81 PD_UPC Upper Case Lock
	$82 PD_BSO Backspace Option
	$83 PD_DLO Delete Line Character
	$84 PD_EKO Echo
	$85 PD_ALF Automatic Line Feed
	$86 PD_NUL End Of Line Null Count
	$87 PD_PAU End Of Page Pause
	$88 PD_PAG Page Length
	$89 PD_BSP Backspace Input Character
	$8A PD_DEL Delete Line Character
	$8B PD_EOR End Of Record Character
	$8C PD_EOF End Of File Character
	$8D PD_RPR Reprint Line Character
	$8E PD_DUP Duplicate Line Character
	$8F PD_PSC Pause Character
	$90 PD_INT Keyboard Interrupt Character
	$91 PD_QUT Keyboard Abort Character
	$92 PD_BSE Backspace Output
	$93 PD_OVF Line Overflow Character (bell)
	$94 PD_PAR Parity Code, # of Stop Bits, and # of Bits/Character
	$95 PD_BAU Adjustable Baud Rate
	$96 PD_D2P Offset To Output Device Name
	$98 PD_XON X-ON Character
	$99 PD_XOFF X-OFF Character
	$9A PD_TAB Tab Character
	$9B PD_TABS Tab Column Width
	$9C PD_TBL Device Table Entry
	$A0 PD_Col Current Column
	$A2 PD_Err Most Recent Error Status
	$A3 Reserved
	NOTE: Offset refers to the location of a path descriptor field, relative to the starting address ...

	SCF Device Drivers
	SCF device drivers support I/O devices that read and write data one character at a time, such as ...
	Generally, the input data (usually from a keyboard) is buffered by the driver’s interrupt service...
	The output data may or may not be buffered, depending on the physical characteristics of the outp...
	The I$GetStt system call (SS_Ready) and I$SetStt system call (SS_SSig) permit an application prog...
	The driver may optionally handle full input buffer conditions using X-ON/X-OFF or similar protoco...
	Special Characters and NULLs
	Line-editing functions (if any) are generally dealt with at the file manager level by SCF. Device...
	• NULL character
	The driver’s input routine should first determine if the received character is a NULL. If so, it ...
	• Abort and Interrupt Characters
	The abort and interrupt characters should cause the appropriate signal to be sent to the last pro...
	• Page Pause
	The page pause character should cause a page pause request to be set in the echo device’s static ...
	• Software Flow Control
	The start and stop transmission characters should cause the resumption/suspension of output data ...
	Parity Stripping
	SCF device drivers do not usually modify the raw data stream when receiving and transmitting data...
	For eight-bit data characters, parity is not normally an issue (except for error checking), becau...
	Data Flow Control
	Data flow control is the process used to control the transfer of data over the physical interface...
	Hardware Flow Control
	Hardware flow control uses physical signal lines to indicate the state of the interface. The Read...
	The level of implementation of hardware handshaking in a SCF driver is determined by the capabili...
	A driver that implements fully functional hardware flow control performs the following functions:
	• Configures the transmitter to only send data when the distant end’s “ready-to-receive” is active.
	• Controls the distant end’s “ready-to-transmit” line so that input buffer over-runs do not occur.
	• Supports the SS_EnRTS, SS_DsRTS, SS_DCDOn, and SS_DCDOff SetStat calls, to allow a user applica...
	A driver that provides minimal (or no) support for hardware flow control usually configures the h...
	Software Flow Control
	Software flow control uses a software protocol to indicate the “ready” state of the two ends of t...
	Support for software flow control is provided via the PD_XON (start transmission) and PD_XOFF (st...
	• If the driver receives the stop transmission character, it should immediately suspend data tran...
	• If the driver’s input routine detects that its input buffer is about to fill, then it causes a ...
	When implementing software flow control, note the following points:
	• The start transmission and stop transmission characters are consumed by the driver’s input rout...
	• Software flow control only works reliably with interrupt-driven drivers, because the detection ...
	• The characters involved with the protocol must be “agreed upon” by both ends of the connection....
	• When controlling the input data, the driver’s input routine and Read routine will cooperate in ...
	• The input routine detects a “high-water” mark; a point at which the input buffer is almost full...
	• The Read routine simply takes characters from the input buffer until the buffer count reaches t...
	SCF Device Driver Storage Definitions
	SCF device driver modules contain a package of subroutines that perform raw I/O transfers to or f...
	Offset Name Maintained By Description
	$00 V_PORT Kernel Device base address
	$04 V_LPRC File Manager Last active process ID
	$06 V_BUSY File Manager Active process ID
	$08 V_WAKE Driver Process ID to awaken
	$0A V_Paths Kernel Linked list of open paths
	$0E Reserved
	$2E V_DEV2 Kernel Addr. of attached device static storage
	$32 V_TYPE File Manager Device type or parity
	$33 V_LINE File Manager Lines left until end of page
	$34 V_PAUS Driver/File Man. Pause request
	$35 V_INTR File Manager Keyboard interrupt character
	$36 V_QUIT File Manager Keyboard abort character
	$37 V_PCHR File Manager Pause character
	$38 V_ERR Driver Error accumulator
	$39 V_XON File Manager X-ON character
	$3A V_XOFF File Manager X-OFF character
	$3B Reserved
	$3C V_Presvd Reserved
	$46 V_Hangup Driver/File Man. Path lost flag
	$54 Device Driver Variables begin here
	NOTE: Offset refers to the location of a static storage field, relative to the starting address o...
	Name Description
	V_PORT Device base address The device’s physical port address. It is copied from M$Port in the de...
	V_LPRC Last active process ID The process ID of the last process to use the device. The IRQ servi...
	V_BUSY Current active process The process ID of the process currently using the device. It is use...
	V_WAKE Process ID to awaken The process ID of any process that is waiting for the device to compl...
	V_PATHS Linked list of open paths A singly-linked list of all paths currently open on this device.
	V_DEV2 Attached device static storage The address of the echo (output) device’s static storage ar...
	V_TYPE Device type or parity This value is copied from PD_PAR in the path descriptor by SCF, so t...
	V_LINE Lines left until end of page The number of lines left until the end of the page. Paging is...
	Name Description
	V_PAUS Pause request A flag used to signal SCF that a pause character has been received. Setting ...
	V_INTR Keyboard interrupt characters This value is copied from PD_INT in the path descriptor by S...
	V_QUIT Quit character This value is copied from PD_QUT in the path descriptor by SCF so that it m...
	V_PCHR Pause character This value is copied from PD_PSC in the path descriptor by SCF, so that it...
	V_ERR Error accumulator This location is used to accumulate I/O errors. Typically, the IRQ servic...
	V_XON X-ON character This character is copied from PD_XON of the path descriptor by SCF, so that ...
	V_XOFF X-OFF character This character is copied from PD_XOFF of the path descriptor by SCF, so th...
	V_Hangup Path Lost Flag This flag should be set to a non-zero value when the driver detects that ...
	Linking SCF Drivers

	SCF Device Driver Subroutines
	As with all device drivers, SCF device drivers use a standard executable memory module format wit...
	The execution offset address in the module header points to a branch table that has seven entries...
	ENTRY dc.w INIT initialize device dc.w READ read character dc.w WRITE write character dc.w GETSTA...
	Each subroutine should exit with the carry bit of the condition code register cleared, if no erro...
	The TRAP entry point is currently not used by the kernel, but in the future will be defined as th...
	The following pages describe each subroutine.
	INIT Initialize Device and its Static Storage
	INPUT: (a1) = address of device descriptor module (a2) = address of device static storage (a4) = ...
	OUTPUT: None
	ERROR cc = carry bit set OUTPUT: d1.w = error code
	FUNCTION: The INIT routine must:
	¨ Initialize the device static storage.
	� Initialize the device control registers.
	Æ Place the driver IRQ service routine on the IRQ polling list by using the F$IRQ service request...
	Ø Enable interrupts if necessary.
	Prior to being called, the device static storage is cleared (set to zero) except for V_PORT which...
	If INIT returns an error, it does not have to clean up its operation, for example, remove device ...
	NOTE: If the INIT routine causes an interrupt to occur, the interrupt can be handled in one of th...
	• Process the interrupt directly by masking interrupts to the level of the device, polling/servic...
	• Allow the interrupt service routine to service the hardware. In this case, the process descript...

	READ Get Next Character
	INPUT: (a1) = address of path descriptor (a2) = address of device static storage (a4) = process d...
	OUTPUT: d0.b = input character
	ERROR cc = carry bit set OUTPUT: d1.w = error code
	FUNCTION: This routine returns the next character available. Depending upon whether or not the ro...
	Polled I/O Mode
	A polled I/O read routine checks the hardware for available data. If there is none, the routine m...
	¨ If the character is the output pause character (V_PCHR), READ sets a pause request (V_PAUS) in ...
	� If the character is a keyboard interrupt (V_INTR) or quit (V_QUIT) character, READ sends the ap...
	NOTE: If the received character is a NULL character, then special character tests should be ignored.
	NOTE: Software handshaking, as specified by V_XON/V_XOFF is not usually implemented for polled-mo...
	The character read is returned to SCF in register d0.
	Interrupt I/O Mode
	For interrupt-driven drivers, READ gets data from the driver’s input FIFO buffer. This buffer is ...
	¨ READ determines if another process has set up a “send signal on data ready” condition. If so, R...
	� READ then determines if data is available in the input FIFO buffer. If not, the driver should s...
	When the driver awakens, either data is available in the FIFO or a signal occurred. If a signal o...
	Æ READ should get the next character from the input FIFO.
	Ø If software handshaking is implemented, READ should determine if input has been halted (V_XOFF ...
	° READ should determine if any errors have been logged by the input interrupt service routine (V_...
	NOTE: Data buffers for queueing data between the main driver and the IRQ service routine are not ...
	NOTE: Normally, READ should not have to enable the device’s “data-buffer-full” interrupt. The dev...

	WRITE Output a Character
	INPUT: d0.b = character to write (a1) = address of the path descriptor (a2) = address of device s...
	OUTPUT: None
	ERROR cc = carry bit set OUTPUT: d1.w = error code
	FUNCTION: The WRITE routine writes a character. Depending upon whether or not the routine is inte...
	Polled I/O Mode
	A polled I/O driver checks the hardware for “ready-to-transmit”. When ready, the character is wri...
	Interrupt I/O Mode
	For interrupt-driven drivers, WRITE attempts to put the character into the driver’s output FIFO b...
	¨ WRITE determines if space is available in the output FIFO buffer. If not, the device driver sho...
	When the driver awakens, either space is available in the output FIFO or a signal occurred. If a ...
	� WRITE puts the character into the output FIFO buffer.
	Æ WRITE determines if output interrupts are currently enabled. If so, this implies that output is...
	Ø If output interrupts are disabled, then output is halted due to software handshaking (V_XOFF re...
	NOTE: Data buffers for queueing data between the main driver and the IRQ service routine are not ...
	NOTE: Typically, this routine should ensure that output interrupts are enabled only when necessar...
	This dynamic enabling/disabling of the device’s transmit interrupts is essential to some serial d...

	GETSTAT/SETSTAT Get/Set Device Status
	INPUT: d0.w = function code (a1) = address of path descriptor (a2) = address of device static sto...
	OUTPUT: Depends upon function code
	ERROR cc = carry bit set OUTPUT: d1.w = error code
	FUNCTION: These routines are wild-card calls used to get/set the device’s operating parameters as...
	Calls which involve parameter passing require the driver to examine or change the register stack ...
	Typical SCF drivers handle the following I$GetStt/I$SetStt calls:
	I$Getstt: SS_EOF, SS_Opt, SS_Ready
	I$SetStt: SS_Break, SS_DCOff*, SS_DCOn*, SS_DsRTS, SS_EnRTS, SS_Open, SS_Opt, SS_Relea*, SS_SSig*,
	* only for interrupt-driven drivers
	Any unsupported I$GetStt/I$SetStt calls to the driver should return an unknown service error (E$U...
	NOTE: A minimal SCF driver should support SS_Ready and SS_EOF, and if interrupt-driven, SS_SSig.
	The following pages describe the driver’s role in the implementation of the above I$GetStt/I$SetS...
	GetStat Calls:
	SS_EOF This routine should exit without an error.
	SS_Opt This routine is called when SCF is asked to return the current path options. SCF calls the...
	SS_Ready This routine returns the current count of data available in the input FIFO buffer. If da...
	SetStat Calls:
	SS_Break This routine is called when an application wishes to assert a “break” condition on the o...
	SS_DCOff These routines are called when you wish to notify an
	SS_DCOn application that the Data Carrier has been asserted (SS_DCOn) or negated (SS_DCOff). Typi...
	Drivers which have hardware detection of a change-of-state only on the Data Carrier line typicall...
	NOTE: Only interrupt-driven drivers should implement these calls.
	SS_DsRTS These routines are called by applications that wish to SS_EnRTS explicitly assert (SS_En...
	handshake line. Typically, the driver performs the hardware action and returns without an error.
	SS_Open This routine is called by SCF whenever a new path to the device is opened. Typically, dri...
	SS_Opt This routine is called when SCF is asked to change the current path options. SCF passes th...
	SS_Relea This routine is called when either SCF or an application wishes to clear down device sig...
	NOTE: When clearing down the signal condition(s), the driver should only clear the signal if the ...
	SS_SSig This routine is called when applications wish to have a signal sent to them when input da...
	¨ It determines if another process has set up a SS_SSig condition. If so, a “not ready” error (E$...
	� It determines if data is available in the input FIFO buffer. If so, the specified signal (user’...
	Æ If no data is available, the process ID, path number (PD_PD), and signal are saved in static st...
	NOTE: Setting up a “send signal on data ready” condition will “busy” the driver for read requests...
	NOTE: Only interrupt-driven drivers should implement this call.

	TERM Terminate Device
	INPUT: (a1) = device descriptor pointer (a2) = pointer to device static storage (a4) = process de...
	OUTPUT: None
	ERROR cc = carry bit set OUTPUT: d1.w = error code
	FUNCTION: This routine is called when a device is no longer in use in the system (see I$Detach).
	The TERM routine must:
	¨ Copy the process ID from the process descriptor (P$ID) into V_BUSY and V_LPRC.
	� Determine if the output FIFO buffer contains any data waiting to be written. If so, the driver ...
	If the driver awakens before the output FIFO has emptied (due to a signal), the driver should sus...
	Æ After the pending output data has been written, the driver should disable hardware handshake pr...
	Ø Return any buffers the driver has requested on behalf of itself. NOTE: The driver should not at...
	NOTE: If an error occurs during the device’s INIT routine, the kernel calls the TERM routine to a...

	IRQ Service Routine Service Device Interrupts
	INPUT: (a2) = static storage (a3) = port address (a6) = system global static storage
	OUTPUT: None
	ERROR OUTPUT: cc = carry bit set (interrupt not serviced)
	FUNCTION: This routine is called directly by the kernel’s IRQ polling table routines. Its functio...
	¨ Check the device for a valid interrupt. If the device does not have an interrupt pending, the c...
	� Service device interrupts. There are three categories of interrupts: control interrupts, input ...
	Æ Clear the carry bit and exit with a RTS instruction after servicing an interrupt.
	Avoid exception conditions (for example, a Bus Error) when IRQ service routines are executing. Un...
	NOTE: IRQ service routines may destroy the contents of the following registers only: d0, d1, a0, ...
	The interrupt categories (control, input, and output) are described in the following pages.
	Control Interrupts
	These interrupts are usually associated with non-data type information on the serial port, such a...
	When signaling is set up for Data Carrier transactions (see SetStat, SS_DCOn, SS_DCOff), the rout...
	Input Interrupts
	The input interrupt routine typically performs the following:
	¨ Read the character from the hardware, clear down the interrupt, and strip parity (if required).
	� Check character error status. If in error, update V_ERR to indicate the error.
	Æ If the character is not a NULL character, determine whether or not the character requires speci...
	a) If the character is the output pause character (V_PCHR), set a pause request (V_PAUS) in the e...
	b) If the character is a keyboard interrupt (V_INTR) or quit character (V_QUIT), send the appropr...
	c) If the character is a software handshake character (V_XON or V_XOFF), service the handshake re...
	NOTE: The software handshake characters are consumed by this routine. After processing these char...
	Ø Put the character into the input FIFO buffer. If there is no room in the buffer, the character ...
	° Determine if any process has set up a “send signal on data ready” condition (SS_SSig). If so, s...
	± Examine the number of characters in the input FIFO, if the driver supports handshaking.
	For software handshaking, if the buffer is nearly full (reached the “high-water mark”), the drive...
	For hardware handshaking, the input interrupt routine should signal its desire to suspend input b...
	² If desired, the input IRQ service routine can now service more interrupts. Once fully completed...
	Output Interrupts
	The output interrupt routine typically performs the following:
	¨ Determine if V_XON or V_XOFF is pending, due to input buffer software handshaking. If so, send ...
	� Determine if output is halted due to software handshaking. If so, disable output device interru...
	Æ Determine if any data is waiting in the output FIFO for transmission. If so, write the data to ...
	Ø Determine the remaining data count in the output FIFO.
	a) If zero, flag the buffer empty, disable output device interrupts, wake any waiting process (V_...
	b) If not zero, check if current count is below the output buffer’s “low- water mark”. If not, ex...
	This technique minimizes contention between the driver’s WRITE routine (filling the output buffer...

	SBF General Description
	Unbuffered I/O
	Buffered I/O
	Considerations When Writing to Tapes
	End-Of-Tape Processing

	SBF I/O Service Requests
	SBF Device Descriptor Modules
	SBF Path Descriptor Definitions
	SBF Device Drivers
	SBF Device Driver Storage Definitions

	Device Driver Tables
	Linking SBF Drivers

	SBF Device Driver Subroutines
	INIT Initialize Device and its Static Storage
	READ Read Block(s)
	WRITE Write Block(s)
	GETSTAT/SETSTAT Get/Set Device Status
	TERM Terminate Device
	IRQ Service Routine Service Device Interrupts

