
A/BASIC V2.1F COMPILER REFERENCE MANUAL

Copyright 1978 Mi croware Systems Corporation A11 Rights Reserved.

Mi croware Systems Corporation distributes this manual for use by its
licensees and customers. The information and programs contained herein
is the property of Microware Systems Corporation and may not be reproduced

or duplicated by any means without express written authorization.

SOFTWARE LICENSE AND LIMITED WARRANTY:

A/BASIC is copyrighted property of Microware Systems Corporation and is
furnished to its customers for use on a single computer system owned by
the customer. The program may not be copied in any form except for use
on the customer's computer system. This license is not transfereable and
the customer may not make this software available to any third party
without express written consent of Microware Systems Corporation.

Purchase of this program and manual is considered implied consent of the
provisions of the software license and warranty.

Microware Systems Corporation warrants this software to be free from
defects for a period of 90 days after date of purchase. Any corrections
may be made by means of printed or magnetic media at the option of
Microware Systems Corporation.

Microware Systems Corporation reserves the right to make changes without
notice (except within the warranty period) in the interest of product
improvement at any time. Microware Systems Corporation cannot be
responsible for any damages, including indirect or consequential, caused
by reliance on this product's performance or accuracy of its documentation.

MICROARE SYSTEMS CORPORATION
P.O. BOX 4865
DES MOINES, IOWA 50304
(515) 265-6121

FIRST EDITION
PART NUMBER BASD-M

Printed in U.S.A.

INDEX

INTRODUCTION
A/BASIC PROGRAM STRUCTURE
ARITHMETIC OPERAT IONS

Numbers
Numeric Variables
Arithmetic Operators
Arithmetic Functions
Arithmetic Errors
Multiple-Precision Arithmetic

STRING OPERATIONS
String Variables
String Concatenation
Null Strings
String Functions

String Operations on the I/0 Buffer
String Expressions

COMPILER DIRECTIVE STATEMENTS
ORG and BASE Statements
DIM Statement
Declaration of Simple Variables
OPTION Statement
REM Statement
END Statement

ASSIGNMENT STATEMENTS
Arithmetic Assignment (LET)
POKE Statement
String Assignment

CONTROL STATEMENTS
CALL Statement
FOR/NEXT Statements
GOSUB/RETURN Statements
IF/THEN Statement

ON ERROR GOTO Statement
ON GOTO and ON GOSUB Statements
STOP Statement

1
2

3

4
5

6
6
7

8

9
9

10

12
13

14
16
16
18

18
19

20

20
20

21
21

22
22

23
24

24

REAL-TIME AND SYSTEM CONTROL STATEMENTS
GEN Statement
IRQ ON/OFF Statements
ON Interrupt Statements
RETI Statement.
STACK Assignment Statement

SWITCH Statement

TASK ON/OFF Statements

INPUT/OUTPUT STATEMENTS
INPUT Statement
PRINT Statement

A/BASIC DISK I/0 OPERATIONS
Disk I/0 Conventions
OPEN FILES and CLOSE FILES Statements

OPEN Statement
CLOSE Statement
WRITE Statement
READ Statement
CHAIN Statement

RESTORE and SCRATCH Statements

KILL Statement

Disk Functions

USER-DEF INED STATEMENTS
User-Defined Statements

COMPILATION PROCEDURES
Compilation Procedures
Error Messages and Processing

25
25
25

26

26
26
27

28
29

30
31

31
32
33
34

25
36

36

37

38

40
41

APPENDIX A • MEMORY UTILIZATION
Memory Map - Compile Time AI
Compiler Internal Memory Addresses A2
A/BASIC Run-Time Environment A3

APPENDIX B - A/BASIC LANGUAGE SUMMARY Bl
APPENDIX C - DIFFERENCES BETWEEN VERSIONS 1.0 AND 2.0 Cl
APPENDIX D- A/BASIC ERROR CODES

Compile-Time Error Codes D1
Run-Time Error Codes D2

APPENDIX E - A/BASIC GLOSSARY El

I

Additional information on your specific version of A/BASIC is listed

on the diskette supplied on a file called INFO.

-1­

HRODUCTION

'BASIC is an optimizing two-pass BASIC compiler for the M6800 family of

icroprocessors which converts programs written in BASIC to pure 6800
chine language.

/BASIC is oriented towards applications previously programmed in assem­
ly language due to its capablity to product extremely fast compact object

rograms.

e compiler's output can be run as a stand-alone RAM, ROM or PROM based
rogram which may be run without any run-time package. A built-in linker/
Jitor automatically selects subroutines from A/BASIC's internal library
d inserts one and only one copy of subroutines required directly into the

ject program.

/BASIC V2.0 requires a minimum of 12K bytes of RAM and the host disk
Jerating system to compile programs. If the computer utilizes the RT/68

Jerating system several real-time and multiprogramming capabilites may

2 used from BASIC source programs.

epending on the specific program, A/BASIC can produce programs which may
eflect a 50 to 1000 times speed improvement over interpreters with a
ignificant memory savings - typically 25-50% less memory required.

/BASIC V2.0 also contains statements for creating, manipulating and
erforming I/0 to disk data files which make it suitable for a wide range
f system programming applications.

-2­

A/BASIC PROGRAM STRUCTURE

An A/BASIC programs consists of a series of source lines. A source line

may optionally begin with a line number, which is then followed by one or

more A/BASIC statements. If the source line contains more than one state­

ment a colon : character is used to separate the statements. A source line

may contain up to 80 characters.

Line numbers are decimal numbers which are up to four digits and positive.

These must appear sequentially in a program and may not be duplicated.

Spaces in A/BASIC statements are not required however they may be used

to improve readability (except when used in string constants). Unlike

interpreters, REMark statements do not affect program size and may be

used generously.

The last statement of a program is an END statement and processing ceases

when ENO is read.

Example of program structure:

100 PRINT "THIS PROGRAMS FINDS THE AVERAGE OF A SERIES OF NUMBERS11

PRINT "HOW MAY AIUMBERS " : INPUT N :T=
FORX=1TON : PRINT "NEXT NUMBER": INPUT I : T=T+I : NEXT X
PRINT:PRINT: PRINT "AVERAGE IS";T/N
PRINT "DO YOU ANT TO CONTINUE" : INPUT A$
200 IF A$="YES" THEN 100
STOP : ENO

When a program such as the one above is compiled, the compiler's
listing \.,,;11 automatically tab and format it for better readability.

-3­

ARITHMETIC OPERATIONS

NUMBERS

A/BASIC's numeric data type is internally represented as 16 bit (2 byte)

two's compliment integers. This permits a equivalent decimal range of
+32767 to -32768. This data representation is quite natural to the 6800's
machine instruction set which allows A/BASIC to produce extremely fast
and compact machine code.

Because the compiler supports boolean operations, unsigned 16 bit binary
numbers may also beused for many functions. The range for these are:

to +65535. These numbers are used for referencing memory addresses in

many cases.

A/BASIC programs may include numeric constants in either decimal or hexa­

decimal notation. In the latter case a dollar sign must precede to hex
value. Either type may have a preceding minus sign to represent a negative
value of a pound sign # to represent the logical compliment (1's compliment

or boolean NOT).

Examples of legal number constants:

290 -5900 $0104 -$3000 12345 #1 #$5000 $FFF #$CWF1

Examples of ILLEGAL NUMBERS:
9.99 (fractions not allowed)
1000000 (number is too large)
+20 (plus sign not allowed - positive assumed if not minus}

Because of the way binary numbers are represented as either unsigned or
2's compliment as well as the differences between hex and decimal notation
of identical numbers, all the following number constants have a binary value

which are the same:

$FFFF 65535

-4-

NUMERIC VARIABLES

Legal numeric variable names in A/BASIC consist of a single letter -Z
or a single letter and a digit 0-9. The following are legal variable
names:

X N R2 Z9 A PI

If declared in a DIM statement, numeric variables may be arrays of one

or two dimensions. The maximum subscript size is 255, thereofre the
largest one-dimensional array has 255 elements and the largest two­

dimensional array has 255255 = 65025 elements (which is too big to ac­
tually exist within the 6800 memory space). Subscripts start with 1.

When referencing subscripted variables the subscripts may be numeric
constants, variables or expressions as long as the evaluated result is
a positive number from 1 to 255. A/BASIC does not perform run-time
subscript checking for overrange errors which would cost considerably in

terms of program size and speed.

References to two-dimensional array require the program to perform a

multiplication to calculate the actual element address. Even though

A/BASIC uses a special fast 8 by 8 bit multiply for array address
calculations it takes about 250 MPU cycles minimum to access a two­

dimensional element as opposed to about 20 MPU cycles for a one­

dimensional access.

Examples of legal subscripting:

N(M) 12) X2(C) Z4(N,M) H(N(A/B),A+2) RA(NNHM)

A/BASIC considers a simple variable with the same name as an array to
be the first element of an array. For example if there is a two­

dimension array A(20,40) using the variable name A without any subscript

is equivalent to using A(1,1).

Each numeric variable or element of an array is assigned two bytes of

RAM for storage.

-5­

ARITHMETIC OPERATORS

The five legal operators for arithmetic are;

+ ADD
SUBTRACT

* MULTIPLY
I DIVIDE

NEGATIVE (UNARY)

There are also four boolean operators:

& AND
OR

% EXCLUSIVE OR
COMPLIMENT (UNARY)

All the above operators may be mixed in arithmetic expressions. The
boolean operators operate in a bit-by-bit manner across all 16 bits of
the numeric value.

The order of operation determines in which order A/BASIC processes
expressions. The compiler will convert arithmetic expressions to an
internal form during compilations and rearrange expressions following

the order of operations so it may produce machine instructions which
are shortest and fastest. Expressions are evaluated in the following
order:

1 FUNCTIONS
2 UNARY NEGATIVE AND NOT
3 AMD, OR, EXCLUSIVE OR

4 MULTIPLY, DIVIDE
5 ADD, SUBTRACT

Parentheses may be used to alter the normal order of evaluation where
required. Some legal usage of expressions:

AB(N,M+4) $200+Z A&B!CD/F+(H+2)&$FFOO) N+A(Z)/VAL("FOUR")

-6­

ARITHMETIC FUNCTIONS

A/BASIC supports the following functions:

ABS(expr)
CLK

The absolute value of the argument.
Current value of the RT/68 real time clock in ticks.
Next number from the random sequence. The number will be
in the range to +32767. If an argument is supplied, it
is evaluated and used to "seed" the random number generator

(randomize it). If the RT/68 operating system is used and
the real time clock is active, RND(CLK) wi1 produce an ext­
remely random (mathemetically) sequence.

PEEK(expr) Used to access a byte value at an address determined by
the result of the argument.

POS The current character position in the output buffer (print

position).

RND or
RND(expr)

SAP(expr)

ERR

Byte swap of the result of the argument.

Returns error type of most recent error condition ·,

ARITHMETIC ERRORS

Arithmetic operations may produce several types of errors which may be
detected and processed. Addition and subtraction may result in a carry

or borrow. Either one will result in the C bit of the MPU1s condition
code register being set. The ON OVR GOTO and ON NOVR GOTO statements
may be used to detect this. This also permits addition and subtraction in
larger representation than 16 bits. (See MULTIPLE PRECISION ARITHMETIC)

Multiplication of two 16 bit numbers may result in a product of up to

four bytes long. A/BASIC will detect this error (see ON ERROR GOTO)
and preserve the high-order 16 bits of the correct 2's compliment result

at addresses $092 and $992C.

Division attempted with a divisor of zero will also produce an error
which is detected at run-time with the ON ERROR GOTO statement.

-7­

MULTIPLE PRECISION ARITHMETIC

Sometimes it is necessary to deal with numbers larger than the basic
2-byte A/BASIC representation. A/BASIC allows addition and subtraction

of numbers of multiples of 16 bits by means of the ON OVR GOTO and ON MOVER

GOTO statements. OVR means overflow (carry or borrow as represented by the
MPU C bit) and NOVR means NOT OVERFLOW.

The example below shows addition and subtraction of 32-bit integers
using the convertion that two variables are used to store each number: Al
and A2 are the first number with Al being the most significant bytes; and
Bl and 2 used similarly. To add Al-AZ to B1-2 the following subroutine

may be used:
100 A2=A2+B2 ON NOVR GOTO 200 : REM ADD L.S. BYTES

A1=A1+1 : REM ADD 1 TO MS BYTES FOR CARRY
200 AI=AI+BI : REM ADD MS BYTES

RETURN
To subtract B1-B2 from Al-A2 a similar subroutine may be used:

100 A2=A2-B2 : ON OVER GOTO 300 : REM SUB. LS BYTES
200 AI=AI-BI : RETURN : REM SUB MS BYTES
300 GOSUB 200 : Al=Al-1 : RETURN : REM BORROW CASE

For cases where multiply, divide or even floating-point arithmetic must
be used, external subroutines may be used. In such cases several
compiler features and capabilites may be used to simplify the interface.

1) Use the CALL statement to call the subroutines.
2) set up conventions so values are passed to the external

subroutines in certain memory addresses that have been
assigned A/ASIC variable names so the A/BASIC program may
easily manipulate them.

3) Use A/BASIC's string processing capabilities to full advantage

in handling I/0 and storage of numeric values. Floating
point numbers can be passed as strings in ASCII format.

1

l

-8­

STRING OPERATIONS

A/BASIC features a complete set of string processing capabili

allow BASIC programs to perform operations on character-orien

Character-type data is represented in A/BASIC in string form

defined as variable-length sequences of characters.

String Literals

A string literal or constant consists of a series of characte1

in quotation marks:

"THIS IS A STRING LITERAL"

Any characters may be included in a string literal except for

characters for carriage return, null or SUB ($1 - used for er

on source programs). A string literal may include up to as ma

as may fit in an A/BASIC source line. The quotes are not cons

part of the string. If a quote is to be included as part oft

two are used so the literal:

"AN EMBEDDED "" QUOTE"

is interpreted to mean the constant string:

AN EMBEDDED" QUOTE

String literals are used in string assignment statements or ex

and in PRINT or WRITE statements.

Strina Variables:

A/BASIC allows string vaiables which may be either single stri

arrays of strings. String variable names consist of a single

A-Z followed by a dollar sign such as A$, M$ or 2$.

-9­

String variables may be used with or without explicit declaration. If a

string variable is encountered for the first time in the source program

as it is being compiled without having been previously declared in a DIM

statement the compiler will assign 32 bytes of storage for the string.

This is the maximum number number of characters that may be assigned to

the variable. If the assignment statement produces a result which has

more characters than assigned for the variable the first N characters

will be stored where N is the length of the variable storage assigned.

A string variable or array may be declared to have a size of 1 to 255

characters in length if the string is declared by a DIM statement before

it is used (see DIM statement description).

If the string name is declared as an array) the maximum subscript size

is 255. Legal usage of string arrays require that only one subscript

(which may be an expression) be used:

A${5) N$(X+5) X$(A+(N/2))

String Concatenation

The string concatenation operator + is used to join strings to form a

new string or string expression. For example:

"EM "+"STRING"

produces the value: "NE STRING".

Nu11 Strings

Strings which have no characters are represented as literal as 1111 which

represents an empty string. This is typically the initial value assigned

-10­

to a string which is to be "built u". The string assignment statement:

A$=""

is somewhat analogous to the arithmetic assi9nmentA"'' in the sense that

both cause a variable to be assigned a defined value of "nothing".

This is important because before a string variable is used in a program it

has a value which is random and meaningless.

String Functions

A/BASIC includes may functions which manipulate strings or convert

strings to/from other types. Some of the functions which include $

in their name produce results which are of a string type and may be

used in string:<expressions. In the description of string functions

that follow, the notation:

N refers to a numeric-type argument which is a constant, variable
or expression

X$ refers to an argument of string type which may be a string

literal, variable or expression.

The following functions produce STRING results:

CHRSU!...}_ returns a character which is the value of the number N

in ASCII.

LEFT$(X$,A) returns the N leftmost characters of X$. For example,

the function LEFTS("EXAMPLE",3) returns "EXA".

MID$(X$,N,M) retur-ns a string which is that part of X$ beginning with

its Nth character and extending for M characters. For example: the

function MID$("EXAMPLE",3,4) returns "AMPL".

RIHT$(X,A} returns the N rightmost characters of X$. An example

this function is RIGHT$("EXAMPLE",3) which produces "PLE",

-11­

STR(A) is a function used to convert a number from numeric type to

string type which is a string of characters which are decimal digits.

For example STR${1234) returns the string "1234". This function has

the inverse effect of the VAL function.

TRM$(X$) is a function which removes trailing blanks from a string

and is typically used after a string is read from input. For exam­

ple TRM$("EXAMPLE ") returns "EXAMPLE".

Note on the above functions: if there are not enough characters in

the argument to produce a full result, the characters returned will

be those processed until the function "ran out" of input, or a null

string, whichever is appropriate. The STR$(N) function will result in

a run-time error detectable by the ON ERROR GOTO function if its

argument is not legal or convertible to a string.

The following functions have string argument(s) and produce a result which

is of type numeric:

ASC(X$) returns a number which is the ASCII value of the first char­

acter of the string. For example ASC("EXAMPLE") returns a value of

$45 or decimal 53 which is the ASCII code for the character E. This

is the inverse function of CHR$.

LEN(X$) returns the length of the string. LEN("EXAMPLE") returns

a value of 7. LEN("") returns a value of 0.
SUBSTR(X#,Y$} is a substring search function which searches for the

string X$ in the string Y$. If an identical substring is found the

-12­

function Nill return a number which is the position of the first char­

acter of the substring in the target string. If the substring is not

found the function returns a value of 0. For example, the function

SUBSTR("EXAMPLE","PL") returns a value of 5. SUBSTR("EXAMPLE","NOT")

returns a value of 0.

VAL (X$) converts a string of characters for decimal digits and option­

ally a leading minus sign to a numeric value. This has the inverse

effect of STR$. If the string arguement is not a legal conversion

string (it has too many, non-decimal or no digit characters) a run­

time error detectable by ON ERROR GOTO occurs. For example:

VAL("1234") returns a numeric value of 1234. VAL("THREE") results

in an error.

StringOperations on the I/0 Buffer

Commonly BASICs have limitations because of the input formatting when

reading mixed data types. For example BASIC input conventions cause

commas which are part of the input data to break up what are really one

long string, etc. A/BASIC has a special string variable, BUF$ which

is defined to be the contents of the run-time I/O buffer which may be

used as any other string variable. BUF$ is 129 bytes lnng.

The following 1/0 statement forms are legal for filling or dumping

the I/0 buffer when used ith BUF$:

INPUT B8UF$ PRINT BUF$

READ #N, BUF$ WRITE #N, BUF$

Example of usage of BUF$ as a variable:

BUF$=MID$(BUFS+A$,N,M)

-13­

String Expressions

String expressions may be created using string variable names, the con­

catenation operator and string functions. Expressions are evaluated

from left to right and the only precedence of operations involved is

evaluation of function· ar9uments performed before concatenation.

At run-time. string operations are performed on data moved to the

string buffer, a compiler-allocated area normally 255 bytes long. Because

this is always the last data storage allocated by the compiler, any

memory available beyond this area may be used to allow automatic buffer

exapans ion if operations on extremely complex string expressions are

involved, or if string variables or constants have a long length.

Examples of legal string expressions:

"CAT"

A$

A$+"D0G"

LEFT$(B$,N)

A$+RIGHT$ (D$,Z)+"TH"

MID$(A$+B$,N,LEN(A$)-1)
11AA"+LEFT$(RIGHT$(TRM$(A$)+8$17,4),X+2)+C$

-14­

COMPILER DIRECTIVE STATEMENTS

ORG and BASE Statements

SYNTAX: ORG addr
BASE addr

These statement types are used to control how A/BASIC assigns memory in
the object program. The 0RG statement is used to assign starting address­
es for the object code and the BASE statement is used to define the
addresses used for variable storage.

Both statement types may be used as often as desired so memory assignments
for program and data storage may be seamented as desired.

A/BASIC uses two internal "pointers" that control ho run-time memory is
allocated. The "object code pointer" always maintains the address where

the next instructions generated by the compiler will be stored. The 0RG
statement assigns a value to this pointer. When A/BASIC is first entered,
a default value of $1000 is assigned to the pointer so unless an ORG
statement is processed before the first executable BASIC statement, the

program1s default starting address is $1000.

For example, the statement:
0RG=$2400

will cause instructions generated for following BASIC statements to begin
at address $2400. The ORG statement may be used to create "modules" at
different addresses within a single program.

The BASE statement is also used to control memory assignment in a similar
manner but it applies to allocation of RAM for variable storage. An in­

ternal "data address pointer" is maintained by A/BASIC to hold the next
address available {at run-time) for variable or temporary storage. It·
is initialized by default to address $0030.

A/BASIC assigns RAM corresponding to BASIC variables the first time they
are encountered in the source program at compilation time. When a "new11

variable name is encountered, A/BASIC assigns the variable run-time

-15­

ORG and BASE Statements - Cont'd

which is then updated by increasing it by the size of the variable
storage assigned. It therefore is again pointing to the next available
RAM location.

An important function of the BASE statement is to allow specific memory
assignments for specific variable names. Reasons for this application
are:

1. To take advantage of the 6800 1 s "direct page" addressing mode.
I

When commonly used variables are located in the page of memory from
$0000 to $00FF the compiler uses the direct addressing mode which
can reduce program size and increase execution speed substantially.

2. To assign RAM consistant with actual RAM addresses that are
available in the computer the software is to run on.

3. To assign specific variable names and types with memory addresses
which have special functions. For example addresses of ACIAs, PIAs
or other interface registers may be given BASIC variable names. A
common type of "trick" is to declare the memory used by a video
display (memory-mapped) as a BASIC string array which permits fast,
simple updates to the video image.

When using the BASE and ORG statements the programmer must take care to
ensure there are no conflicts between program and data storage by using

assignments which are not overlapped.

Sometimes it is useful to declare a variable without generating code at
the time it is declared. If the variable is an array, the DIM statement
may be used. If it is a simple type, the DIM statement declaration with
a size of one may be used for a declaration. For example. to assign the
address $8010 to the variable Pl the following sequence may be used (assum­
ing Pl had not been referenced previously in the program):

-16­

DIM Statement

This statement type is used to declare arrays and optionally, other
simple variables. Arrays must be declared in a DIM statement before they
are referenced in the program. The DIM statement may be used to declare
more than one array. Arrays may not be redefined in following DIM State­

ments. Array subscripts have a legal range of 1 to 255.

Numeric Arrays

Numeric arrays may be declared to have one or two dimensions. Two dimen­
sional arrays are stored in row-major order. Each element of a numeric
array requires two bytes of storage. Examples of numeric array declaration:

DIM B(20),C(l0,20),0($10,$20)

String Arrays
String arrays may only be one-dimensional, however, the DIM statement is
also used to specify the string size (1 to 255 characters) so the declar­
ation for a one dimensional string array will have two subscripts: the
number of strings and the length of each string. A single string may be
declared in the DIM statement with a length specification only. Examples:

DIM A$(80) one string of 80 characters

DIM B$(16,72) 16 strings of 72 characters

In the two examples above, A$ is used in the program WITHOUT any subscripts
because it is not an array. B$ would be used in the program with one sub­
script because it is a one-dimensional array. For example:

A$=B$(N)
$(X+2)=A$

Declaring Simple Variables

Because A/BASIC allocates memory for variables as they are encountered for
the first time, it is often useful to declare a variable name so it may be
assigned storage at a particular point, but without generating code. This

is often the case when it is desired to assign a variable a certain memory
address. A/BASIC processes a variable declared as an array but used without

subscripts in the program as the first elenent of the array be internally

-17­

Declaring Simple Variables - Cont'd

assuming a subscript of (1) for a one dimensional array or (1,1) for a

two-dimensional array. Because of this a declaration of a variable

in a DIM statement with a subcript of l is legal but the variable may
be used throughout the program without a subscript.

Example; Suppose a program is to be used to read from and write to

an ACIA interface at address $8008 - $8009 and a PIA at addresses

$8020 - $8023, and they are to be assigned variable names. A DIM
'

statement at the beginning of the program may be used to assign variabl
names to these devices:

BASE=$8008
DIM A(1)
BASE=$8020
DIM P1),Q(1)
BASE=$0030

set compiler data pointer
declare ACIA as variable
reset data pointer

declare PIA "" and "B" registers
restore data pointer for other variables

The program may now refer to either the PIA or ACIA by variable name.
To access the PIA "B" registers:

N=Q
or to read the ACIA:

N=A

-18­

Option Statement

SYNTAX: 0PT option, ... ,option

The OPT statement is used to turn on compiler options listed below:

I- Inhibit object file generation
H - Print instructions generated in hex form

\

N - No listing

S- Print symbol table

None of the above options are automatically selected by default. The H
option provides the advanced programmer with the capability to examine
the actual machine instructions generated for each BASIC source statement.

The S option causes the compiler's symbol table to be printed in hex at

the end of the second pass. The symbol table data includes the symbol
name, its run-time memory address, and its size. The two rightmost col­
umns represent:

Row and Column size for numeric arrays
String length and #strings for string variables or arrays

The symbol table dump may include symbols not used in the original source
program which are compiler-allocated storage for special purposes. They

are:
IO - Input/output buffer (129 bytes if used)
ST- String buffer (255 bytes plus additional available memory)
RR - Random number generator seed value (2 bytes)
ANY SYMBOL WITH A ASTERISK - For/next loop terminate/increment

Examples: OPTS
OPT I,H,S

REMARK STATEMENT

The REM statement is used to insert comments in the BASIC source program.
The first three letters must be REM. On multiple statement lines the

REM statement may only be used as the last statement on the line. This
statement does not affect object program size or speed.

--19--

END Statement

The END statement is the last statement of the source program. It causes

compilation to cease and any statements following are ignored. If the BASIC
source program omits an END statement and end-of-file is read on the source
file END will be automatically assumed.

END does not result in generation of code. If it is desired to return to
the operating system at run-time, a STOP statement must be used before

the END.

j

-20­

ASSIGNMENT STATEMENTS

Arithmetic Assignment

LET var= expr
var= expr

The expression is evaluated and the result is stored in the variable which

may be an array. Use of the keyword LET is optional.

POKE As ianent

SYNTAX: POKE(exor) = expr

The expression is evaluated, and the result is truncated to a single

byte value which is stored at the address determined by evaluation on

the expression in parentheses. If the form POKE(number) is used to

specify the address the fastest possible code is generated. The least

significant byte of the result is stored.

String Assignment

strvar = strexpr

LET strvar = strexpr

The string expression is evaluated and the result assigned to the string

variable specified, which may be an array element. If the result of the

evaluation produces a result with a longer length than the size of the

result variable, the first N characters only are stored where N is the

length of the result variable.

SYNTAX:

. SYNTAX:

-21­

CONTROL STATEMENTS

Call Statement

Syntax: CALL address

Description: The CALL statement is used to directly call a machine-language

subroutine at the address specified. The subroutine will return to the BASIC
program if it terminates with an RTS instruction and does not disturb the
return address on the stack.

Examples: CALL $E0CC
CALL 1024

For/Next Statement

Syntax: FOR var = expr
NEXT var

Call subroutine at address $EOCC
Call subroutine at decimal addr. 1024

T0 expr STEP exDr

Description: The FOR/NEXT uses a variable var as a counter while performing
the loop delimited by the NEXT statement. If no step is specified, the
increment value will be 1. The FOR/NEXT implementation in A/BASIC differs

slightly from other BASIC due to a looping method that results in extremely

fast execution and minimum length. Note the following characteristics of
FOR/NEXT operation:
1. var must be a non-subscripted numeric variable.
2. The loop will be executed at least once regardless of the terminating

value.

3. After termination of the loop, the counter value will be GREATER than
the terminating value because the test and increment is at the bottom
(NEXT) part of the loop.

4. FOR/NEXT loops may be exited and entered at will.
5. At compile time, up to 16 loops may be active, and all must be properly

nested.
6. The initial, step, and terminating values may be positive or negative.

The loop will terminate when the counter variable is greater than the
terminating value.

Examples: FOR N = J+l TO Z/4 STEP X*2

FOR A =-100 T0 -10 STEP -2

-22­

Gosub/Return Statements

Syntax: GOSUB line#
RETURN

Description: The GOSUB statement call a subroutine starting at the line

number specified. If no such line exists, an error message will be gen­

erated on the second pass. The machine stack is used for return address
linkage. The RETURN statement terminates the subroutine and returns to the
line following the calling GOSUB. Subroutines may. have multiple entry and

return points. The GOSUB and RETURN statements compile directly to JSR and

RTS machine instructions, respectively.

If/Then Statement

Syntax: IF expr> <relation) exr) THEN Tine #
IF expr) relation) expr) G0SUB line #

Description: The IF/THEN or IF/GOSUB is used to conditionally branch to
another statement or conditionally call a subroutine based on a comparison
of two expressions. Legal relations are:

less than
> greater than

= equal to
I.. ') not equal to= - less than or equal to

>- -> greater than or equal to
If the statement is an IF/GOSUB the subroutine specified will be called if the
relation is true and will return to the statement following. Because of
A/BASIC's multiple statement line capability, the IF statement can be used
as an IF .. THEN .. ELSE function if another statement follows on the same line.
Examples: If N = I0O THEN 1210

If A+B=C*D GOSUB 5500

IF x = 200 THEN 240

IF A$=8$ THEN 300
GOTO llOO

-23­

ON ERROR GOTO Statement

SYNTAX: ON ERROR GOTO
ON ERROR GOTO line#

This statement provides a run-time error "trap" - the capability to trans­
fer program control when an error occurs.

When an ON ERROR GOTO statement is executed the compiler saves the address of

the line number specified in a temporary location. If any detectable error

occurs during execution of following statements, the program will transfer
to the line number given in the ON ERROR GOTO statement last executed. This
would normally be the line number where an error recovery routine begins.

If the ON ERROR GOTO statement is used WITHOUT a line number specified, it
has the effect of "turning off" the error trap - errors in following state­

ments will be ignored.

After an error has been detected, the ERR function may be used to access
a value which is an error code identifying the type of error which most
recently occured. The exact error codes are related to the error codes used
by the host operating system and are listed in the appendix.

The types of errors that can be detected by ON ERROR GOTO and the types of

statements they occur in are listed below:

DIVIDE BY ZERO
ASCII-TO-BINARY CONVERSION
ERROR
MULTIPLY OVERFLOW

• DISK ERRORS

Example of usage:

ARITHMETIC EXPRESSIONS
INPUT, READ, VAL(X$)

ARITHMETIC EXPRESSIONS
DISK I/0

100 ON ERROR GOTO 500
120 INPUT A(A)

N = N+I : IF N=SO THEN 600: GOTO 120

600 PRINT "ILLEGAL INPUT ERROR - RETYPE"

-24­

On-Goto/on-Gosub Statements

Syntax: ON
ON

exr
expr

GOTO

GOSUB
line # ,

line #,
line #

line# , . ,

line #
line #

Description: The expression is evaluated and one line number in the l
corresponding to the value-is selected for a branch or subroutine call
i.e-, if the expression evaluates to 5, the fifth line number is used.
the result of the expression is less than specified, the next statement
executed.

Examples: ON A*(B+C) GOTO 200,350,110,250,350

ON N GOSUB 500,510,520,500,100

Stop_ Statement

Syntax: STOP

Description: The STOP statement is used to terminate execution of a progr
I

by causing a jump to the entry point pas. The END statement should not bl
confused with STOP as STOP will not terminate compilation of the program./

. I

I

-25­

REAL-TIME ANO SYSTEM CONTROL STATEMENTS

Gen Statement

Syntax: GEN number , number , number

Description: The GEN statement allows data or machine language instructions
to be directly inserted in the program. The list of values supplied are
inserted directly into the object program. If a value given in the list is
less than 255 one byte will be generated for that value regardless of

leading zeros.

Example: GEN $BD,$E141,$CE,1024 (PRODUCES 6 BYTES)
GEN 0040,$00,32767 {PRODUCES 4 BYTES)

IRQ On/Off Statements

Syntax: IRQ ON

IRQ OFF

Description: These statements are used to control the state of the MPIJ
interrupt mask flag in the condition code register and are used to enable/

disable interrupt recognition. These statements correspond directly to the
6800 CLI and SEI instructions. Refer to the RT/68 Systems Manual and the
M6800 Programming guide for specifics on interrupt processing.

0n Interrupt Statements

Syntax: 0N IRQ GOTO line#

ON NMI GOTO line #

Description: These statements are used for generating programs.to be used
in the RT/68 SINGLE TASK MODE (non-multiprogramming) where interrupts are
processed as vectors to specific service routines. When encountered in a
program these statements cause the absolute address 6f the program corres­

ponding to the line number specifi ed to be stored at the interrupt vector
addresses in the operating system scratchpad ($AOOO for IRQ and $A006 for

MI).

-26­

The line number specified should be the beginning of the interrupt service

routine which would typically service the device causing the interrupt.

This routine is similar to a BASIC subroutine except it is terminated by an

RETI (return from interrupt) statement instead of a RETURN statement.

Examples: ON IRQ 60T0 2010
ON NMI GOTO 400

Interrupt Return Statement

Syntax: RETI

Description: This statement terminates an interrupt-caused routine by load­
ing the MPU register contents prior to the interrupt from the machine stack
and resuming program execution from the point where the interrupt was
acknowledged. This statement corresponds directly to the machine language

RTI instruction.

Stack Assignment Statement

Syntax: STACK= address

Description: This statement is used to initialize or change the MPU stack

pointer register. This is typically one of the first statements in an A/
BASIC program if used. If a STACK statement is not included in the program,

the operating system scratchpad stack ($A4049 to $A016) will be used by the

program for the machine stack. This is adequate for most programs that do
not: nest subroutines extensively; use interrupts; run in the multipro=
gramming mode; or process elaborate arithmetic expressions. Otherwise, a
specific memory area should be dedicated for the stack and the STACK in­
struction used to load the stack pointer with the TOP (highest address}

of the stack.
Example: STACK= $A042

Switch Statement

Syntax: SITCH

Description: This statement is used in the RT/68 MULT ITASK MODE to call the
executive, thereby causing the task to be suspended while other tasks may

-27-

run. The task selection/switching process is described in section 4 of the
RT/68 Systems Manual. The machine instructions generated by this statement

include operations that set the MPU interrupt mask and the RT/68 task switch

flag byte (RELFLG) and a software interrupt (SHI) which activates the exec­

utive. When the task is run again, execution resumes at the statement
following the SWITCH statement.

Task On/Off Statements

Syntax: TASK {task #32oN
TASK ask >0FF

Description: When used in the RT/68 MULTITASK MODE this statement will find
the task status byte of the specified task in the status table and either set
or clear the task state bit. This causes the task to be either activated
(able to run) or disactivated (may not run) when the executive is selecting
a task to execute. Note that this statement does not directly cause the task
to start/stop- it merely enables/disables it from consideration when the
executive is searching for a task to run. A task may use the TASK N OFF to

turn itself off and become dormant. This is often used when the task was

activated by another to perform a specific function and has completed its
operation.

-28­

INPUT/OUTPUT STATEMENTS

All input and output statements use a 129-byte buffer for intermediate storage

of data. This buffer may contain up to 128 characters. The buffer is auto­
matically allocated by the compiler after allocation of all other memory
space except the string buffer (if used). This buffer is only allocated for
programs that use input/output.

NOTE: A special form of all input/output statements designed for buffer
direct input/output using the special string variable BUF$ is described in

the STRING PROCESSING section.

Input Statement

Syntax: INPUT var, ... , var
Description: This statement causes code to be generated which prints a?
prompt and space on the terminal device, then reads characters into the
input buffer until 128 characters have been read or a carriage return symbol
is read. A carriage return/line feed is printed when the last character in
input.
At run-time. entry of a CONTROL X will print *DEL* and CR/LF and reset the
buffer. A CONTROL O will backspace in the buffer and echo the deleted
characters.

The variables specified var may be numeric or string, subscripted or simple
type. When the program is "looking for" a number from the current position

in the input buffer, it will skip leading spaces, if any and read a minus
sign (if any) and up to five number characters. The numeric field is terminated

by a space, comma, or end of line. If a non-digit character is read, or any
other illegal condition a value of zero will be returned for the number.

If a string-type field is being processed, characters from the current position

will be accepted including blanks until the variable field is terminated by
a comma or end of line, or when it is "ful]". If no characters are available,
a null string will be returned.

-29­

Examples;
INPUT A,,S$,B$
INPUT AA!,M-1),B,A(A,A)
INPUT A$(A),B$(M1),D$

INPUT B

Print Statement

Syntax: PRINT out spec delimiter .•. delimiter out spec
Description: This statement processes the list of out spec 's and puts

the appropriate characters in the buffer. The buffer is then output to the
terminal device.

An out spec may be a string expression or a numeric expression, or the

output functton TAB expr which inserts spaces in the buffer unti1 ·the posit
expr is reached. Each item in the list is seperated by a delimiter which

is a comma or semicolon. The buffer is divided into sixteen 8-character zon. . .
which are effectively tab stops every eighth position. If a comma is used a!
a delimiter, the next item will begin at the first position of the next zone
If a semicolon is used> NO spacing will occur. A semicolon at the end of a

Print statement will inhibit printing of a carriage return/line feed at the
end of the line.

Examples:

PRINT A,B;C
PRINT A${N) ;A$(N+l)
PRINT A,A$,B,B$
PRINT TAB(N=1),Z4
PRINT A;;C;
PRINT A$;TAB(N+M);B$

I

-30­

A/BASIC DISK INPUT/OUTPUT OPERATIONS

A/BASIC uses the facilities of the host operating system for input

and outout to sequential disk files. In order for programs generated
by A/BASIC to operate properly when disk functions are used, the mem­

ory resident facilites of the DOS must be present.

Disk I/0 in A/BASIC is channel-oriented meaning a file to be used for
input or output is "opened" and assigned a channel number.by which all
further operations are performed. A/BASIC supports up to 10 channels
which is the maximum number of files that may be open at any time.

All disk file names are defined identically to the operating system's

file name conventions, i.e. the file name specifications are identical.

With the exception of the CHAIN statement, all files used by A/BASIC

are ASCII text files.

Many of the A/BASIC disk operations use the same DOS subroutines as

would be used by asssembly-language programs so information as to disk
operations listed in the disk system manufacturer's software manual will

generally apply.

Note: In the descriptions of disk statements that follow the term

"fi7um" refers to a channel number which is a constant which may range

from to 9.

-31­

CLOSE FILES Statement

This statement is used to close the DOS disk manager. The CLOSE FILES

statement should be executed after all disk operations are complete or
in the case of a program error abort. It calls the DOS to "clean up"
after disk operations and will close any files that may still be open.

OPEN Statement

SYNTAX: OPEN #fi1num,strexp
This statement is used to open (initialize) a file for input or output, and

assign the file a channel number. One and only one file may be open on a
particular channel at a time. The DOS requires that a particular file be
open for either read or write, not both. The OPEN statement will first
search the file di rectory on the specified drive and open the file for
read if a file by the name specified is found. If no such file is found,

a file with the name specified will be opened (created) for write operation.

The STATUS function may be used after a file is opened to determine its

read or write status if necessary.

If an error occured during the open operation, the line specified by the
last ON ERROR GOTO statement to be executed will be transferred to. The
ERR function may be used to determine the error type.

An OPEN statement must be used prior to any'I/0 to the particular channel.
Also note that it is the only time that the file name is explicity used. All
further references to the particular file as long as it is open is by means

of the channel number.

The channel number must be a constant integer from 9 to 9. The file name

specification is a string constant, variable or expression and must conform
to the DOS requirements for legal file name specifications (drive, name,

extension, etc.}

-32­

OPEN Statement (Cont1d)

Be1ow are some examples of legal usage of the OPEN statement.

OPEN #,"TEST"

A$="MASTER"
OPEN #2,A$

A$="MASTER"
OPEN #2,"1:"+A$+"TXT"

Close Statement

SYNTAX: CLOSE #filnum

Opens the file TEST and assigns to channel

Opens the file MASTER on channel 2

Opens the file MASTER.TXT on drive #1 and
assigns it channel 2 (string expression eval
uates to: 1:MASTER.TXT)

This statement is used to close a file after I/0 operations are complete
and releases the channel. The file on the channel is closed for either
read or write automatically. The channel is then available for reassign­
ment to another file if desired.

Examples of legal usage:

CLOSE #2

NOTE: DO NOT CONFUSE THE OPEN FILES AND CLOSE FILES statements with the
OPEN and CLOSE STATEMENTS AS THEY PERFORM ENTIRELY DIFFERENT FUNCTIONS.

-33­

WRITE Statement

Syntax: RITE #filnum,outlist

The WRITE statement causes a record containing the data specified to
be written on the disk file as a single record. The file must be open
for use as a write file (see OPEN).

The output list is a sequence of string or numeric constants, variables
or expressions separated by commas. Each element in the list is consid­

ered to be an "item" within the disk record to be written. Strings are
written to a maximum size of 127 characters and numeric values are written
in ASCII decimal form. The conversion is automatic. The resulting record
length must be less than or equal to a total of 128 bytes long.

Examples of legal usage:

WRITE #3,A,B,C
RITE #6,"DATA",N$,C$,Z$,T
WRITE #6,4OO+Z,A$+MID$(B$,4,M),M/2
WRITE #2,"MASTER FILE NUMBER "+STR$(N)

Results of writing a disk record;

Each item is written on the record with a comma item seperator between
items. The records are variable length and use a carriage return character
as an end of record terminator. The statement (assume variable N=10):

WRITE #2,25,-40,"ORD",N
produces a disk record which has the following format (in hex):

32 35 2C 2 34 39 3 2C 57 4F 52 44 2€ 31 39 9D
2 5 Sep - 4 9 Sep W W R D Sep 1 0 EOR

-34­

READ Statement

SYNTAX: READ IF1num,varlist

The read statement causes the next record of the read file on the chan­
nel specified to be read into the A/BASIC I/O buffer. After the record

is read, data items corresponding to the items in the variable list will

be taken in order and stored in the appropriate variable locations. The
variable list may include numeric or string type which may use subscripted

variables.

The number of items given in the variable list should agree with the
number of items on the disk data record (except as noted below).
The file must be open for read and must be an ASCII text-type file.

Disk records are variable length.

Rules for reading different data types: the following rules apply to and
define the result of reading items from a disk record under various

circumstances.

NEXT VARIABLE IN
LIST IS ... NUMERIC STRING EMPTY

NEXT ITEM IN BUFFER (RECORD) IS ..

NUMERIC TYPE,

STRING TYPE

NUMBER

STRING OF
DIGITS

NUMBER if string ERROR
contains legal
decimal chars.

STRING NULL STRING

If there are more items on the record than variables in the list, they wi11

be ignored, Note that numeric variables are not stored as binary bytes,

rather they are converted to ASCII' character representation before being

written and converted to binary after being read.

-35­

CHAIN Statement

Syntax: CHAIN strexp

This statement allows the BASIC program to load and begin execution of

another (or an additional) program. The program name is specifed by the
string expression.

The program to be CHAINed must have the following characteristics:

1) It MUST have been saved on the disk as a binary format

program. A/BASIC produces HEX format object programs so
A/BASIC-produced programs must be loaded and then saved
in binary before being CHAINed.

2) A transfer address (starting address) must have been
specifed when the binary program was saved.

Warning: The CHAIN statement uses the DOS'S RUN function so if an
error occurs (file not found, etc.) control will pass back to DOS,
not the BASIC program.

The CHAIN function may also be used to load blocks of binary data,
character data, or additional program if the following "trick" is used.
lhen the additional data or program is saved, specify a transfer address
that corresponds to the actual address of the BASIC statement following

the CHAIN statement that will cause the data/program to be loaded.

Examples of usage:

CHAIN "l:UPDATE.BIN"
CHAIN "PROG7"

A$="2:QUERY.BIN"
CHAIN A$

RESTORE Statement

SCRATCH Statement

SYNTAX: RESTORE #filnum,
SCRATCH #filnum,

,#fi1num
,#filnum

These statements are used to close and then reopen files on the spec­
ified channel(s). The channels must have been previously OPENed.

The RESTORE statement closes a file open for either read or write and
opens it again for read. This is analogous to a "rewind" operation.

The SCRATCH statement closes a file open for either read qr write and
opens it for write.
ARNING: The SCRATCH statament destroys the file being SCRATCHed!!!
It in effect deletes (destroys) the file and opens a new file with the
same name. When a file is SCRATCHed all previous data is lost.

Because of the sequential nature of files supported by the DOS, these
statements are used to "reposition" the internal "pointer" to the next
record to read from or written to.

Examples of legal usage:
SCRATCH #2,#8

RESTORE #3

KILL Statement
"· s-··.·

SYNTAX: '·KILL stringexpr

The file name specified is PERMANENTLY DELETED from the system. Use with
great care as the file may not be recovered.

Example:
KILL "TEMP3"
KILL A$

I
t

-37­

DISK FUNCTIONS

The following functions are available for use with disk input/output
operations. All operate as the other BASIC functions and return a
numeric-type result.

EOF Function Syntax: EOF(#filnum)

Returns a value of 1 if an end of file condition exists on the file
assigned to the channel specified, otherwise returns •

Example: IF EOF(#4) = 1THEN 559

FILSIZ Function Syntax: FILSIZ(#filnum)

This function returns the current length of the file specified in

sectors.
Example: IF FILSIZ(#4) = 35 THEN 449

STATUS Function Syntax: STATUS(#filnum)

Returns the current status of the file specified as follows;
= File is not currently open

1 = File is open for read
2 = File is open for write

Examples:
ON STATUS(#8) GOT0 470.120
IF STATUS(#1) = 1 THEN 619
N2=STATUS(#5)

-38­

USER-DEFINED STATEMENTS

A/BASIC V2.0 has provisions for the user to add up to three new user­

defined statements. The keywords may be selected by the user and become

part of A/BASIC's "vocabulary".

Operationally, the user-defined statements will generate jump-to­
subroutine (JSR) hardware instructions when a user-defined keyword
is processed. The JSR is to a fixed, user-supplied address which is
assumed to be the entry point of a run-time subroutine resident in the
system at run-time (i.e. the user must supply a "run-time package" for
these functions). The user-defined statements may optionally include
an arithmetic expression which is evaluated by the compiler and passed
to the user routines in the accumulators.

EXPR OPTION
ADDR.

SUBR. ADDR
L.S. BYTE

To add user-defined statements to A/BASIC V2.0, the user must insert
parameters into the compiler at the addresses shown in the table below.
The first parameter is the keyword name, which must be exactly four
characters long and is patched into the compiler beginning at the address

given below. The second is the run-time user subroutine address. The
third, optional parameter is whether or not A/BASIC should "look for"
an arithmetic expression following the user keyword which is to be eval­
uated and passed to the subroutine (an expression may be a constant,

variable or expression).
KEYWORD SUBR. ADDR
STRING ADDRESS M.S. BYTE

1
2

3

05F0 - 05F3

05F5 - 05F8
05FA - O5FD

0B08

OBEl
0EC

OBDA
OBE3

OBEE

0D5 - 0806

OBDF - OBEO
0BE9 - 0EA

To add the expression option, change the addresses shown from 03, 65 to

12, 27
EXAMPLE: To add the statement PLOT (expr) to A/BASIC when the user

routine has a run-time address of $3500 the following changes are made.
l. The ASCII values for the characters P,L,O,T are inserted from 05F0

to 05F3. 2. The address is inserted: $35 at addr)B)8 and $00 at
addr 0DA 3. The expression evaluation option is activated by changing

005 and 0B06 to $12 and $27.

USER-DEFINED STATEMENTS? CONT'D

After the changes have been correctly made, the compiler will accept
O

the new statement PLOT. For example it may be used as:

200 PLOT N+I

for which the compiler will generate instructions:

LDAB (addr of L.S. byte of N)
LDAA (addr of M.S. byte of N)
ADDS ftl
ADCA #O
JSR $3500

GET N

ADD 1

CALL USER SUBR.

Because the compiler "expects" an expression to follow the new keyword
an error will result if some arithmetic value does not follow. If the
new keyword was added without the expression option activated. it would
have to be used alone such as:

200 PLOT
which would directly translate to the machine instruction

JSR $3500

'

I
i
''

-40--

COMPILATION PROCEDURES

The first step in producing an A/BASIC program is to use the system's text

editor to create the source program containing the A/BASIC program. A/BASIC

accepts the file formats used by most editors.

The compiler is then called as a system command such as:
ABASIC, PR0G1,001

The format above specifies the file PROG as being the source file and 08J1

as the file on which the object is to be written. The object file spec­

ification may be omitted for a "listing only" compile.

A/BASIC is then loaded by the DOS and begins compilation. During the
second pass a formatted listing is produced which will include any error
messages (see COMPILE TIME ERRORS). The listing usually consists of three
fields: the first is the hex address where the object code starts for the
BASIC source line; the second field is the statement line number if any; and

the last field is the BASIC source line.

After compilation is complete, the program statistics, load map and symbol
table (if the program included an OPTS statement) are printed. The load
map lists the names and addresses (main entry point) of the subroutine
packages the compiler selected and included in a particular program. The
BASLIB module names, functions and compiler addresses are:

NAME FUNCTION SIZE ADDRESS

0UT TERMINAL OUTPUT MODULE (PRINT) $00E3 $1D00

INP TERMINAL INPUT MODULE (INPUT, READ) $0125 $1DF3
SK DISK I/O INTERFACE (DISK OPS.) $00AO $1F20
MUL MULTIPLY (ARITHMETIC) $0080 $2000

DIV DIVIDE (ARITHMETIC) $007E $2080
RND RANDOM NUMBER GENERATOR (RND) $001A $20FE

STl* STRING PRINIT IVES AND FUNCTIONS $00E5 $2120
ST2 STRING FUNCTIONS (SUBSTR, VAL,STR) $0079 $2205

ARR ARRAY MULTIPLY $0015 $0809

IND ARRAY INDIRECT LOAD $OOOA (gen.)

* These modules have multiple entry points.

-41­

COMPILER OPERATION, CONT'D

The object file output is in BINARY format and may be loaded into
memory using the system's loader. The program starting address is
$1000 by default and will be different if an 0RG statement was processed

by the compiler before any other executable statements.

Error Messages and Processing

When A/BASIC detects an error in the source program during either the
first or second pass it will print the source line in error and a message

with a error code (the codes are listed in the appendix). The line below
the erroneous source line will have an up arrow showing the approximate
position of the error. The error location is about 95% accurate.

When an error is detected on a source line the compiler will not process
the line further even if it is a multiple statement line, so the rest of
the source line should be examined carefully for possible undetected

errors.

-A1­

A/B8SIC V2. 0 MEMORY UTILIZATION MAP

3FFF

Additional 4K available for table
expansion

2FFF+ - - - - - - - - - - - - - - - - - - -
SYMBOL TABLE - uses 6 bytes/entry
100 symbols in 12K system

2DA7j- ""'
LINE REFERENCE TABLE - 4 byte/entry

605 in 12K system

2432 i---------------------1
BUFFERS and STACKS
Input and Output Buffers
Parser Stack
For/Next Stack

227F I Machine Stack I
BAS IC SUBROUTINE L"!BRARY AREA
(8ASL IB2)

} «l}
COMPILE-TIME I/0 PACKAGE

17F
COMPILER MAIN PROGRAM

(I/0 Jump Table 0100 - 0114)
[]}Loo[

COMPILER ORKING STORAGE
OOlF 1-------------------1

RESERVED FOR OPERATING SYSTEMS
0000

May be user-modified to expand tables

-A2­

COMPILER INTERNAL MEMORY ADDRESSES

Some important internal addresses are listed below along with other

related information. The source to run-time and compile-time I/0

routines are provided with the compiler in assembler source format.

Any modifications to these routines are at the user's risk. I/0
routines that are user-modified must retain identical functions, entry
points and size as the original routines provided.

Address Definition
0022-0023
0024-0025
0030
003A
0038
009B8-009C
0090
009E-00B5
0124-0128
0131-0132
014F-0150
015F-0160
03E2
lCBE
1€97-1€98
103E-103F
lEBA-lEBB
1EC9-1ECA
1EC
lEDB
2388-23D8
2309-2432

II II II t II II II

Data address pointer - var. storage allocation pointer
Object address pointer - object code address pointer
Pass flag- 0=pass 1
Listing page number
Listing line counter
Object code buffer load address
Object code buffer byte count
Object code buffer (binary format)
End addr of line# table
End addr of symbol table
Default initial value for data pointer
Default initial value for object code pointer
Number of lines per page minus nine
of nulls at end of line (min. 1) - compile time
Address of listing output character routine
Run time char. out routine address (PRINT)
II II II II II II { INPUT)

11 11 backspace character
u delete line character
Source input buffer
Listing output buffer

-A3­

A/BASIC Run-Time Environment

Memory Assignments:

A/BASIC programs should reserve addresses below $0030 for. the operatin
system and for BASLIB temporary storage. The usage of this area of
memory by A/BASIC is listed below:

Operating System and Monitor Interfaces

If an A/BASIC program uses any of the disk I/0 operations the host DOS
must be resident in memory as A/BASIC will call its routines for 1/0.

i

I
I
!
'call the

Reserved for operating system
File control block temp. addr. (OSK)
Error trap address (ST2,DSK,MUL,DIV,INP)
Error type code (ST2,DSK,MUL,DIV,INP)
Not used but reserved for future use
XR temporary (INP,OUT,ST1,ST2)
I/0 Buffer pointer (INP,OUT,DSK,ST2)
Reserved
I/0 Buffer zone counter (INP,OUT,DSK,ST2)
String Buffer pointer (ST1,ST2)
String XR temp (ST1,ST2)
String temp (ST1,ST2)
Multiply overflow high-order 16 bits (MUL)
String functions temp. (ST1,ST2)

$0000-$000F
$0010-$0011
$0012-$0013

· $0014
$0015-$001F
$0020-$0021
$0022-$0023
$0024-$0025
$0026
$0027-$0028
$0029-$002A
$002B-$002C

$0020-$002F

I

'II
References to the above routines in BASLIB are made using these monitor//
subroutines only.

If the program uses any of the REAL-TIME statements TASK ON/OFF, SWITCH
ON IRQ GOTO, ON NMI GOTO, etc. the system monitor must be Microware's I
RT/68MX or RT68MXP.

If the program uses INPUT Or PRINT statements, the program will
system ROM monitor for basic character I/0 subroutines:

INPUT CHARACTER ADDRESS=$E!AC
OUTPUT CHARACTER ADDRESS=$El01

-Bl­

A/BASIC V2.0 LANGUAGE SUMMARY

ASSIGNMENT:

LET POKE

CONTROL:

CALL FOR/TO/STEP GOTO NEXT
GOSUB RETURN IF/THEN IF/GOSUB
ON ERROR GOTO ON OVR GOTO ON NOVR GOTO ON/OTO
ON/GOSUB STOP

INPUT/OUTPUT:
INPUT PRINT CLOSE FILES
OPEN CLOSE READ RITE
CHAIN RESTORE KILL SCRATCH

SYSTEM CONTROL AND REAL-TIME:

GEN IRQ ON IRO OFF ON IRQ GOTO
ON NMI GOTO RETI STACK SWITCH
TASK .. ON TASK .. OFF

COMPILER DIRECTIVES:
BASE 0RG END DIM
OPT REM

NUMERIC FUNCTIONS:

AS POS CLK RND
PEEK TAB ASC LEN
SUBSTR VAL ERR EOF

FILSIZ STATUS SWAP

STRING FUNCTIONS:

CHR$ LEFT$ RIGHT$ MID$
STR$ TRM$ BUF$

OPERATORS:

+ ADD
- SUBTRACT
/ DIVIDE

MULTI PLY
- NEGATIVE

& AND
! OR

EXCL. OR
NOT

+ CONCATENATE (STRING)

-C1­

DIFFERENCES BETWEEN VERSION 1.0 (CASSETTE) AMO 2.0 (DISK)

Additions to 2.0

Ne Statement Types Added:

OPEN
CHAIN
(User Defined)

CLOSE
RESTORE

READ
SCRATCH

WRITE
KILL

New Functions Added:

ERR
STATUS

EOF
SAP

FILSIZ

Statement Types Deleted:
TREAD TRITE

Statements Modified

ON ERROR GOTO - Now sets/removes error trap across multiple lines
DIM - permits individual sizing of string variables
POKE. PEEK - accepts expressions for addresses
STOP - jumps to DOS instead of RT68
1/0 STATEMENTS - No longer RT/68 dependent

Compile-time and Source File Differences:

Line numbers optional
Generates load map at end of compilation
Formatted listing
Monitor-independent I/0

Run-time Differences:

Individually sized strings
Monitor-independent I/0

Full error trap capability
BASLIB Subroutine elements improved and smaller
Larger run-time scratch area
No longer supports tape I/0

A/BASIC V2.0 COMPILE-TIME ERROR CODES

02 Line number duplicated or out of sequence
03 Unrecognized statement
04 Syntax error
05 Variable name missing or in error
06 Equal sign missing
07 Undefined line reference: GOTO or GOSUB to nonexistant line number
08 Right parenthesis missing or misnested
09 Operand missing in expression
10 Destination line number Missing or in error
11 umber missing
12 Misnested FOR/NEXT loop(s)
13 Symbol table overflow
14 Illegal task number - must be 0 to 15
15 Missing or illegal usage of relational operator(s)
16 delimiter (,or ;) missing
17 Quote missing at end of string
18 Illegal type or missing counter variable in FOR statement
19 Redefined array
20 Error in array specification: subscript missing; too many subscripts
21 Error in array specification: subscript zero or larger than 255
22 Variable storage overflow, tried to allocate past $FFFF
23 Reference to undeclared array
24 Subscript error
25 Missing, illegal type or incorrect function argument (numeric)
26 Illegal option
27 Unrecognized operator in string expression
28 Concatenation operator (+) missing
29 Missing, illegal type or incorrect function argument (string)
30 Too many FOR/NEXT loops active - max is 16
31 Line reference table overflow
32 Program storage overflow - tried to allocate past $FFFF
33 ON or OFF keywords missing in IRQ statement
34 GOTO or 6OSUB missing
35 Illegal channel number: must be Oto 9
36 Error in disk 1/0 list

* These error types are not program errors. If more system memory is
available the tables may be expanded to include more entries.

-2­

A/BASIC V2.0 RUN-TIME ERROR CODES

The ERR function will return one of the following codes after an error

occurs at run-time:

ERRORS 9 to 31, - DISK ERRORS The codes used are identical to those used
by the host DOS and may be found in the system's DOS

manual. All codes may not be implemented by DOS.

ERROR 32

ERROR 33

ERROR 34

- MULTIPLY OVERFLOW The result of a multiplication exceeds
the range +32767 to -32768. The result was the low order

16 bits of the result and the high order 16 bytes are saved

in the fast scratch area.

- DIVIDE ERROR A divide with a zero divisor was attempted.
A result of zero was returned.

- CONVERSION ERROR The BASLIB ASCII-to-binary conversion
routine read illegal, oversize or no input. A value of

zero was returned.

-E1­

A/BASIC GLOSSARY

The terms defined below may be unfamiliar to some programmers or used in a

special context in this manual.

ALLOCATION: The process of assignment of a specific memory address to variables

or machine instructions.

CODE GENERATION: The process of creating machine language instructions.

COMPILE-TIME: Used to describe the time during which the BASIC program is
being processed by the compiler.

LIBRARY: A collection of subroutines within the compiler (BASLIB) which are
used to generate subroutines within the machine language program. It includes

"images" of subroutines fo mathematical functions, string processing, input/

output, array operations, etc.

LINE REFERENCE: A reference from a statement to a line number which is that

of another line.

LINE REFERENCE TABLE: A table which is kept by the compiler which is used
to store the correspondences bebteen referenced line and the memory address

assigned to the line.

LINKER/EDITOR: A portion of the A/BASIC compiler program which places sub­
routines which are required in the object program. The images are obtained
from the library and the linker/editor inserts absolute addresses of the sub­
routines in the program. Only one copy of a subroutine will ever be generated
in a program, and only those that are required by that specific program.

OJECT CODE: The machine-language instructions generated by the compiler.

OBJECT FILE: The tape or other media file that the compiler has written the

machine language program on.

-E2­

0JECT PROGRAM: The machine language program produced by the compiler from
the BASIC source program.

PASS: A complete scan of the source program. A/BASIC is a twopass compiler

so it must completely read the source program twice.

REAL-TIME EXECUTIVE: The portion of the RT/68 Operating System that schedules
and controls task execution.

RUN--TIME: Used to descirbe events or the time during which the machine
language program is being executed.

SOURCE FILE: The tape or other media containing the A/BASIC program which
is to be compiled.

SOURCE PROGRAM: The BASIC program text to be compiled.

SYMBOL TABLE: A table kept by the compiler during compilation that contains
information about the correspondence between variable names and assigned
memory addresses, and type of variable.

SYNTAX: Rules for proper construction of parts of BASIC statements.

TWO'S COMPLIMENT: A method of binary representation of numbers where negative
numbers are represented as the result of subtracting the absolute value of the
number from zero.

