
A/BASIC INTERPRETER REFERENCE MANUAL

Copyright 1979 Microare Systems Corporation All Rights Reserved

Microware Systems Corporation distributes this manual for use by its
licensees and customers. The information and programs contained herei
is the property of Microware Systems Corporation and may not be reprod
or duplicated by any means without express written authorization.

SOFTWARE LICENSE AND LIMITED WARRANTY:
I

A/BASIC is copyrighted property of Microware Systems Corporation and i
furnished to its customers for use on a single computer system owned b
the customer. The program may not be copied in any form except for us
on the customer's computer system. This license is not transferable a
the customer may not make this software available to any third party
without express written consent of Microware Systems Corporation.

,
Purchase of this program and manual is considered implied consent oft
provisions of the software license and warranty.

Microware Systems Corporation warrants this software to be free from
defects for a period of 90 days after date of purchase. Any correctio
may be made by means of printed or magnetic media at the option of
Microware Systems Corporation.

Microware Systems Corporation reserves the right to make changes wit:hc
notice (except within the warranty period) in the interest of product
improvement at any time. Microware Systems Corporation cannot be
responsible for any damages, including indirect or consequential, caus
by reliance on this product's performance or accuracy of its documentz

MI CROARE SYSTEMS CORPORATION
P.O. BOX 4865
DES MOINES, IOWA 50304
(515) 265-6121

FIRST EDITION

PART NUMBER BASI-M

- I­

INTRODUCTION

The A/BASIC Interpreter is a fast BASIC Interpreter for 6800 family

microcomputers. Though it was primarily created as an interactive

edit/debug companion to Microware's A/BASIC Compiler, it can be used

alone in many applications where speed and versatility rule out use

of other types of interpreter.

Users are cautioned that interpreters and compilers have fundamental

differences that preclude 100% compatibility, so A/BASIC Interpreter

programs should be checked against the compiler's requirements before

compilation.

The source listing to the Interpreters I/0 package is also provided

for users who wish to modify it for s pee i al purposes. We cannot,

however, be responsible for results or performance of this software

when so modified.

'This program is supplied to operate with the disk or tape configuration

identified by the version number, and will run correctly on system hard­

ware commonly used with the particular operating system or monitor. For

disk version a file called "INFO" is included on the disk which contains

information for the specific version.

-2­

GETTlNG STARTED

for disk systems, the interpreter is supplied as a command file called

"BASINT", and should automatically load and start when this command is
entered. Cassette versions are supplied on a Kansas City Standard 300

baud tape in Motorola "SI" hex format.

All versions except MOOS have a cold-start (reset) jump at $0100 and a

warm start at $0103. For MOOS these addresses are $2000 and $2003,

respectively,

INPUT/OUTPUT

The following control characters are used throughout:

CONTROL X = delete entire line
CONTROL H = backspace
CONTROL C = program interrupt (see below)

Any of the above may be altered to suit any particular system by changing
the corresponding entry in the I/0 table (source listing supplied). The
control-C interrupt function is not implemented in most versions because

of its highly system-dependent nature. This function requires that the
interface control register for the system keyboard to be sampled regularly.
The user may install this small routine if desired. Specific information
can be found in the I/0 source listing.

-3­

BASIC COMMANDS

These commands cannot be used as program statements.

NE
Clears memory and resets the interpreter. The previous program is
destroyed.

SIZE
Causes the interpreter to print the program size (number of bytes).

SAVE
Outputs a copy of the program in source text format to tape or disk.
In disk systems the interpreter will respond with:

FILE NAME:
to prompt the user to enter the name of the file to be created. The
file name format must agree with the disk operating system's requir­
ments and syntax. Any error message displayed will directly corre­
spond the DOS error reporting conventions.

The output file can be used as source for the A/BASIC compiler, or
can be modified by the system's text editor.

LOAD
Causes a source program to be read into the interpreter from disk or
tape. Disk versions will print the prompt:

FILE NAME:
As with the SAVE command, file names and error reporting are dependant
on the particular operating system's conventions. LOAD does not clear
the previous program (if any), making it possible to develop a program
in segments.

RUN
Starts execution of the beginning with the lowest-number line.

BASIC COMMANDS - CONT'D

LIST

Prints one or more lines of the BASIC program. There are several var­
iations of this command depending on the parameters given:

LIST
LI ST, number

LIST,numberl,number2

LIST,number,

LIST, ,number

List the entire program.
List the single line specified.

List all lines starting with line numberl up
to and including number2.

List all line from number specified to the
end of the program.

List all lines from the beginning of the pro­
gram up to and including the line number
specified.

Because the A/BASIC Interpreter is an incrental compiler it uses an internal
format for storage of programs, the program may not be LISTed exactly the
same as originally entered. Spacing between keywords, expressions, etc.,
will be uni forly single spaced. This will not affect the execution of the
program in any way.

AUTO

Initiates the automatic line numbering mode. lhen active, the interpreter
will automatically supply sequential line numbers at the start of every
new line. This mode can be turned off by deleting a line, then entering
any other command.

This command has several variations that depend on the parameter list given:

AUTO

AUTO , number

AUTO,number, incr

AUTO,, incr

Begin automatic line numbering. Line numbers
start where previously left off using the same
increment. After a NEW command or when the
interpreter is first started up, the first line
number will be 10, and the initial increment
factor is set to 10.
Begin auto line numbering starting at the line
number specified using the previous increment
factor (or 10).

Start auto line number at the line and using the
increment factor specified.

Resume auto line numbering starting with the
line number where previously left off using the
new increment factor specified.

-5­

BASIC COMMANDS - CONT'D

Exits the interpreter and returns to the system monitor or disk oper­
ating system.

CONT

Continue program execution after a PAUSE statement halted the program.
Execution will resume with the statement following the PAUSE statement.
This command will not be performed if the program was modified since
the program was stopped.

-6­

VARIABLE BINDING AND STORAGE ALLOCATION

One of the major design goals of the A/BASIC Interpreter was to provide

a means to interactively prepare and debuo source programs for ti }/}k[/
compiler. To accomplish this the interpreter must behave as closely as
possible to the way the compiler does. Due to major differences in the
structure of interpreters as compared to compilers) exactly identical

operation is not possible (or sometimes not even desirable).

The fundamental difference is how memory space is assigned to program and
variable storage. With the compiler) the programmer is in total control
by including BASE and ORG statements in the program which are obeyed even
if conflicts result (which are almost always very fatal errors).

On the other hand, the interpreter controls memory assignments automatically
and therefore eliminates potential conflicts. Unfortunately this also,
eliminates many useful options the programmer has in assigning storage
for variables to specific addresses.

The A/BASIC interpreter's system is a compromise between both worlds.

First, the ORG statement is non-functional as the interpreter must control
program storage to allow interactive editing, LISTing, etc. Also, the
interpreter's internal compiled representation is not machine language
and program sizes would be different than regular compiled code anyway.

The process of assigning specific memory space to variables (sometimes

called "binding") is often very important, so the BASE statement is

implemented in the interpreter according to the rules and restrictions

listed below.

1. BASE statements may be used anywhere in a program. They become
effective hen "executed" (different than compiler which sequentially

scans statements from beginning to end without control transfers by
GOT01s, etc.}.

-7­

2. The interpreter will defend itself. If an attempt is made to
allocate memory used by the program or the interpreter itself, an
error message will be displayed and the BASE statement ignored.

3. BASE statements may be used to cause more than one variable to
share the same memory space with other variables.

If a program is stopped and statements changed, it is likely that
the memory assignments may also have to be changed. Variables will
then lose their previous values (are set to zero or null) and may
be re-bound to new addresses.

The interpreter will print the message:

WARNING VARIABLES UNBOUND

to alert the user of this occurance. Some direct execution mode state­
ments execution will also cause this to happen.

DIRECT EXECUTION

Any A/BASIC statement may be typed in without a line number and immediately
executed. This can be of great usefulness when debugging a program. The
PRINT statement can be used to examine the current value of variables, and
the LET statement can be used to assign values to variables. Some state­
ments may or may not produce a useful function in this mode. For example,
the NEXT statement may or may not work, depending on whether or not a
FOR loop using the variable N is active.

The direct execution mode also allows immediate execution of
This is in effect an implied "PRINT" statement. An example:
has the value 12 and variable B has the value 3 typing:

expressions.
if variable A

-8­

DIRECT EXECUTION - CONT'D

A-B
will result in immediate execution and the interpreter will print the result:

g

A simple or array variable name can be entered alone:

A

will result in the interpreter printing:

12

WARNING: Do not enter an expression starting with a number! The interpreter
will think it is a numbered line and treat it as such. Placing parentheses
around such expressions will avoid this problem.

If a variable is used in direct execution that has not been referenced
previously, previous variable-storage bindings may be changed and a warning
message printed (see VARIABLE BINDING AND STORAGE ALLOCATION).

-9­

A/BASIC PROGRAM STRUCTURE

An A/BASIC program consists of a series of source lines. A source line

must begin with a line number, which is then followed by one or more

A/BASIC statements. If the source line contains more than one state­

ment a colon : character is used to separate the statements. A source

line may contain up to 80 characters.

Line numbers are decimal numbers which are up to four digits and positive.

These must appear sequentially in a program and may not be duplicated.

Spaces in A/BASIC statements are not required however they may be used to

improve readability (except when used in string constants). The interpreter

will list programs with uniform (single) spacing.

The last statement of a program is an EMO statement and processing ceases

when END is read.

EXAMPLE:

100 FOR N=I TO 10 : PRINT N: NEXT N

200 A=B/C

300 PRINT A,B,C

ARITHMETIC OPERATIONS

NUMBERS

A/BASIC1s numeric data type is internally represented as 16 bit (2 byte)

two's compliment integers. This permits a equivalent decimal range of
+32767 to -32768. This data representation is quite natural to the 6800's
machine instruction set which allows A/BASIC to produce extremely fast
and compact machine code.

Because A/BASIC supports boolean operations, unsigned 16 bit binary
numbers may also be used for many functions. The range for these are:
0 to +65535. These numbers are used for referencing memory addresses in
many cases.

A/BASIC programs may include numeric constants in either decimal or hexa-­

decimal notation. In the latter case a dollar sign must precede a hex
value. Either type may have a preceding minus sign to represent a negative
value or a pound sign # to represent the logical compliment (l's complt:ment
or boolean NOT).

Examples of legal number constants:

299 -594 $9190 -$300 12345 #1 #$509 $FFF #$C9FI

Examples of ILLEGAL NUMBERS:

9.99 {fractions not allowed)
1000000 (number is too large)
+20 (plus sign not allowed - positive assumed if not minus)

Because binary numbers are represented as either unsigned'or 2's compliment,
as well as the differences between hex and decimal notation of identical
numbers, all the following number constants have a binary value which are
the same:

$FFFF 65535

-1l­

NUMERIC VARIABLES

Legal numeric variable names in A/BASIC consist of a single letter A-Z
or a single letter and a digit -9. The following are legal variable

names:

X N R2 Z9 A9 Pl

If declared in a DIM statement, numeric variables may be arrays of one
or two dimensions. The maximum subscript size is 255, therefore the
largest one-dimensional array has 255 elements and the largest two­
dimensional array has 255*255 = 65025 elements (which is too big to act­

ually exist within the 6800 memory space). Subscripts start with 1.

When referencing subscripted variables the subscripts may be numeric
constants, variables or expressions as long as the evaluated result is
a positive number from 1 to 255, otherwise an error will occur.

Examples of legal subscripting:

N(M) A(I2) X2(C) Z4(N,M) H(N(A/B),A+2) RA(NM+M)

A/BASIC considers a simple variable with the same name as an array to
be the first element of an array. For example if there is a two­
dimension array A(20,40) using the variable name A without any subscript

is equivalent to using A(1,1).

Each numeric variable or element of an array is assigned two bytes of

RAM for storage.

-12­

ARITHMETIC OPERATORS

The five legal operators for arithmetic are:

+ ADD
SUBTRACT

* MULTIPLY
/ DIVIDE

NEGATIVE (UNARY)

There are also four boolean operators:

&

%
4
T

AND
OR
EXCLUSIVE OR
COMPLIMENT (UNARY)

All the above operators may be mixed in arithemetic expressions. The
boolean operators operate in a bit-by-bit manner across all 16 bits of

the numeric value.

Expressions are evaluated in the following order:

I FUNCTIONS
2 UNARY NEGATIVE AND NOT
3 AND, OR, EXCLUSIVE OR
4 MULTIPLY, DIVIDE
5 ADD, SUBTRACT

Parentheses may be used to alter the normal order of evaluation where

required. Some legal usage of expressions:

AB(N,M+4) $200+Z A&!CD/F+(H+(02)&$FFOO) NA(Z)/VAL("N$)

-13­

ARITHMETIC FUNCTIONS

A/BASIC supports the following functions:

ABS(expr)

RND or
RND (expr)

PEEK(exr)

POS

SWAP(expr)

ERR

ADDR

The absolute value of the argument.

Next number from the random sequence. The number will be
in the range to +32767. If an argument is supplied, it

is evaluated and used to "seed" the random number generator

(randomize it).

Used to access a byte value at an address determined by

the result of the argument.

The current character position in the output buffer (print
position).

Byte swap of the result of the argument.

Returns error type of most recent error condition.

Returns memory address assigned to variable (not in compiler).

ARITHMETIC ERRORS

Arithmetic operations may produce several types of errors which may be
detected and processed. Addition and subtraction may result in a carry
or borrow. Either one will result in the C bit of the MPU's condition

code register being set. The ON OVR GOTO and ON NOVR GOTO statements
may be used to detect this. This also permits addition and subtraction in

larger representation than 16 bits. (See MULTIPLE PRECISION ARITHMETIC)

Multiplication of two 16 bit numbers may result in a product of up to
four bytes long. Division attempted with a divisor of zero will also
produce an error which can be detected with the ON ERROR GOTO statement.

-14­

MULTIPLE PRECISION ARITHEMTIC

Sometimes it is necessary to deal with numbers larger than the basic

2-byte A/BASIC representation. A/BASIC allows addition and subtraction

of numbers of multiples of 16 bits by means of the 0N OVR GOTO and
ON NOVR GOTO statements. OVR means overflow (carry or borrow as
represented by the MPU C bit) and NOVR means NOT OVERFLOW.

The example below shows addition and subtraction of 32-bit integers
using the convertion that two variables are used to store each number:
A1 and A2 are the first number with A1 being the most significant bytes;
and Bl and B2 used similarly. To add A1-A2 to B1-2 the following
subroutine may be used:

100 A2=A2+B2

150 A1=A1+1
200 A1=A1+Bl

250 RETURN

ON NOVR GOTO 200 : REM ADD L.S. BYTES
: REM ADD 1 TO MS BYTES FOR CARRY

REM ADO MS BYTES

To subtract B1-B2 from A1-A2 a similar subroutine may be used:
100 A2=A2-B2 : ON OVER G0T0 300 : REM SUB. LS BYTES
200 A1=A1-B1 : RETURN : REM SUB MS BYTES
300 GOSUB 200 : Al=Al-1 : RETURN : REM BORROW CASE

For cases where multiply, divide or even floating-point arithmetic must
be used, external subroutines may be used. In such cases several
compiler features and capabilities may be used to simplify the interface.

1) Use the CALL statement to call subroutines.
2) Set up conventions so values are passed to the external

subroutines in certain memory addresses that have been
assigned A/BASIC variable names so the A/BASIC program may
easily manipulate them.

3) Use A/BASIC's string processing capabilities to full advantage
in handling I/0 and storage of numeric values. Floating

point numbers can be passed as strings in ASCII format.

-15­

STRING OPERATIONS

A/BASIC features a complete set of string processing capabilities which
allow BASIC programs to perform operations on character-oriented data.
Character-type data is represented in A/BASIC in string form which is

defined as variable-length sequences of characters.

String Literals

A string literal or constant consists of a series of characters enclosed

in quotation marks:

"THIS IS A STRING LITERAL"

Any characters may be included in a string literal except for the ASCII
characters for carriage return, null or SUB ($1A - used for end-of-file
on source programs). A string literal may include up to as many characters
as may fit in an A/BASIC source line. The quotes are not considered a
part of the string. If a quote is to be included as part of the string
two are used so the literal:

"AN EMBEDDED "" QUOTE"
is interpreted to mean the constant string:

AN EMBEDDED II QUOTE
String literals are used in string assignment statements or expressions,

• and in PRINT or WRITE statements.

String Variables:

A/BASIC allows string variables which may be either single strings or
arrays of strings. String variable names consist of a single letter A-Z
followed by a dollar sign such as A$, MS, or Z$.

-16­

String variables may be used with or without explicit declaration. If a

string variable is encountered for the first time in the source program

without having been previously declared in a DIM statement A/BASIC will

assign 32 bytes of storage for the string. This is the maximum number of

characters that may be assigned to the variable. If the assignment

statement produces a result which has more characters than assigned for

the variable the first N characters will be stored where N is the length

of the variable storage assigned.

A string variable or array may be declared to have a size of 1 to 255

characters in length if the string is declared by a DIM statement before

it is used (see DIM statement description).

If the string name is declared as an array, the maximum subscript size

is 255. Legal usage of string arrays require that only one subscript

{which may be an expression) be used:

A4(5) N$(X+5) X$(A+(U/2))

String Concatenation

The string concatenation operator+ is used to join strings to form a

new string or string expressions. For example:

"NE "+"STRING"

produces the value: "NE STRING".

Nul1 Strings

Strings which have no characters are represented as literal as 1111 which

represents an empty string. This is typically the initial value assigned

-17­

to a string which is to be "built up". The string assignment statement:

A$=""

is somewhat analogous to the arithmetic assignment A=0 in the sense that

both cause a variable to be assigned a defined value of "nothing".

This is important because before a string variable is used in a program it

has a value which is random and meaningless.

String Functions

A/BASIC includes many functions which manipulate strings or convert strings

to/from other types. Some of the functions which include$ in their name

produce results which are of a string type and may be used in string

expressions. In the description of string functions that follow, the

notation:

Nor M refers to a numeric-type argument which is a constant, variable
or expression

·XS or Y$ refers to an argument of string type which may be a string

literal, variable or expression.

The following functions produce STRING results:

CHR(A) returns a character which is the value of the number N
in ASCII.

LEFT$(X$,NV) returns the N leftmost characters of X$. For example)
the function LEFT$("EXAMPLE",3) returns "EXA".

MID$(X$,N,M) returns a string which is that part

its Nth character and extending for M characters.
.. • _,. -:. .. + :.. ... •

function MID$("EXAMPLE",3,4) returns "AMPL".

RIGHT$(1,Al] returns the NI rightmost characters of X$. An example
this function is RIGHTS("EXAMPLE",3) which produces "PLE".

of X$ beginning with

For example: the

-18­

STR$(N) is a function used to convert a number from numeric type to

string type which is a string of characters which are decimal digits.
For example STR$(1234) returns the string "1234". This function has

the inverse effect of the VAL function.

TRM$(X$) is a function which removes trailing blanks from a string
and is typically used after a string is read from input. For exam­

ple TRMS$("EXAMPLE ") returns "EXAMPLE".

Note on the above functions: if there are not enough characters in the

argument to produce a full result, the characters returned will be those

processed until the function "ran out" of input; or a null string, whichever

is appropriate.

The following functions have string argument(s) and produce a result which

if of type numeric:

ASC(X$) returns a number which is the ASCII value of the first char­
acter of the string. For example ASC("EXAMPLE") returns a value of
$45 or decimal 53 which is the ASCII code for the character E. This
is the inverse function of CHR$.

LEN($) returns the length of the string. LEN("EXAMPLE") returns

a value of 7. LEN(1111) returns a value of •

SUBSTR(X$,Y$) is a substring search function which searches for the
string X$ in the string Y$. If an identical substring is found the

function will return a number which is the position of the first char­

acter of the substring in the target string. If the substring is not
found the function returns a value of J. Fo example, the function

SUBSTR("PL","EXAMPLE) returns a value of 5. SUBSTR("EXAMPLE","NOT")

returns a value of 0.

VAL(X$) converts a string of characters for decimal digits and option­

ally a leading minus sign to a numeric value. This has the inverse
effect of STRS. If the string argument is not a legal conversion
string (it has too many, non-decimal or no digit characters) a run­
time error detectable by ON ERROR GOTO occurs. For example:

-19­

VAL("1234") returns a numeric value of 1234. VAL("THREE") results

in an error.

string Operations_on_the I/0 Buffer

Commonly BASICS have limitations because of the input formatting when

reading mixed data types. For example BASIC input conventions cause

commas which are part of the input data to break up what are really one

long string, etc. A/BASIC has a special string variable, BUF$ which

is defined to be the contents of the run-time I/0 buffer which may be

used as any other string variable, BUF$ is 129 bytes long.

The following I/0 statement forms are legal for filling or dumping the

1/0 buffer when used with BUF$:

INPUT BUF$

READ #N, BUF$

PRINT BUF$

RITE #N,BUF$

Example of usage of BUF$ as a variable:

BUF$=MID(BUF$+A$,N,M)

-20-

stringExpressions

String expressions may be created using string variable names, the con­

catenation operator and string functions. Expressions are evaluated

from left to right and the only precedence of operations involved is

evaluation of function arguments performed before concatenation.

At execution> string operations are performed on data moved to the

string buffer, working area 255 bytes long.

Examples of legal string expressions:

A$

A$+"DOG"

LEFT$(B$,N)

A$+RIGHT$(D$,Z)+"T"

MID$(A$+$,N,LEN(A$)-1)
11AA11+LEFT$(RIGHT$(TRM$(A$)+B$,Z4),X+2)+C$

-21­

BASE Statement

Syntax: BASE= address

Used to set or change the interpreter's internal variable storage allocation
pointer to the address specified. Variables encountered for the first time

in subsequent statements will be assigned storage sequentially from this
address. Multiple BASE statements may be used.

If the BASE statement would cause storage to be allocated which is already
used by the interpreter or the program, the statement wi)l be ignored,

and a warning message will be displayed.

See the VARIABLE BINDING AND STORAGE ALLOCATION section for more information.

NOTE; The A/BASIC compiler assigns variable storage while scanning statement
lines from beginning to end. The interpreter allocates storage during
initial execution of the program, following program flow. The following pro­
gram would be identical on either:

100 BASE= $4000
200 A=1
300 BASE = $5000
400 B=l

This one would not because the "GOSUB" would cause storage to be allocated

for C first in the interpreter only.

100 BASE= $4000
150 G0SU
200 A=1
300 BASE= $5000
400 =1 : STOP
500 C=1 : RETURN

-22­

DIM Statement

This statement type is used to declare arrays and optionally, other

simple variables. Arrays must be declared in a DIM statement before they
are referenced in the program. The DIM statement may be used to declare
more than one array. Arrays may not be redefined in following DIM state­

ments. Array subscripts have a legal range of 1 to 255.

Numeric Arrays

Numeric arrays may be declared to have one or two dimensions. Two dimen­

sional arrays are stored in row-major order. Each element of a numeric
array requires two bytes of storage. Examples of numeric array declaration:

DIM B(20)C(10,20),($10,$20)

String Arrays

String arrays may only be one-dimensional, however, the DIM statement is
also used to specify the string size (1 to 255 characters) so the declar­
ation for a one dimensional string array will have two subscripts: the
number of strings and the length of each string. A single string may be
declared in the DIM statement with a length specification only. Examples:

DIM A$(80)
DIM B$(16,72)

one string of 80 characters
16 strings of 72 characters

In the two examples above, A$ is used in the program WITHOUT any subscripts
because it is not an array. B$ would be used in the program with one sub­

script because it is a one-dimensional array. For example:

A$=B$(N)
B$(X+2)=A$

Declaring Simple Variables

Because A/BASIC allocates memory for variables as they are encountered for
the first time, it is often useful to declare a variable name so it may be

assigned storage at a specific time. This is often the case when it is
desired to assign a variable a certain memory address. A/BASIC processes a
variable declared as an array but used without subscripts in the program as

the first element of the array.

-23­

Declaring Simple/arables- Cont'd

Because of this a declaration of a variable in a DIM statement with a

subscript of 1 is legal but the variable may be used throughout the program

without a subscript.

Example: Suppose a program is to be used to read from and write to an

ACIA interface at address $8008 - $8009 and a PIA at addresses $8020 - $8023,

and they are to be assigned variable names. A DIM statement at the beginning

of the program may be used to assign variable names to these devices:

BASE=$8008
DIM A(1)
BASE=$8020
DIM P{l) ,Q(l)
BASE=$0030

set compiler data pointer
declare ACIA as variable
reset data pointer
declare PIA "A" and "B" registers
restore data pointer for other variables

The program may now refer to either the PIA or ACIA by variable name.

To access the PIA "B" registers:

N=Q

or to read the ACIA:

N=A

-24­

REMARK STATEMENT

The REM statement is used to insert comments in the BASIC source program.

The first three letters must be REM. On multiple statement lines the

REM statement may only be used as the last statement on the line. This

statement does not affect object program size or speed.

END STATEMENT

This statement ceases execution of the program and returns control to

A/BASIC command mode.

TRCON, TRCOFF STATEMENTS

These statements cause the trace mode to be turned on and off.

-25­

ASSIGNMENT STATEMENTS

Arithmetic Assignment

SYNTAX: LET var = expr
var = expr

The expression is evaluated and the result is stored in the variable which

may be an array. Use of the keyword LET is optional.

POKE Assignment

SYNTAX: POKE (expr) = expr

The expression is evaluated, and the result is truncated to a single (least

significant) byte value which is stored at the address determined by

evaluation on the expression in parentheses.

String Assignment

SYNTAX: strvar = strexpr
LET strvar = strexpr

The string expression is evaluated and the result assigned to the string

variable specified, which may be an array element. If the result of the

evaluation produces a result with a longer length than the size of the

result variable, the first N characters only are stored where N is the

length of the result variable.

-26­

CONTROL STATEMENTS

Call Statement

Syntax: CALL address)

Description: The CALL statement is used to directly call a machine-language
subroutine at the address specified. The subroutine will return to the BASIC
program if it terminates with an RTS instruction and does not disturb the
return address on the stack.

Examples: CALL $EOCC
CALL 1024

For/Next Statement

Call subroutine at address $E0CC
Call Subroutine at decimal addr. 1024

Syntax: FOR <var> = <exp> TO expr) STEP expr>
NEXT (var)

Description: The FOR/NEXT uses a variable (var> as a counter while performing
the loop delimited by the NEXT statement. If no step is specified, the
increment value will be 1. The FOR/NEXT implementation in A/BASIC differs
slightly from other BASIC due to a looping method that results in extremely

fast execution and minimum length. Note the following characteristics of

FOR/NEXT operation:

l. <var> must be a non-subscripted numeric variable.
2. The loop will be executed at least once regardless of the terminating

value.
3. After termination of the loop, the counter value will be GREATER than

the terminating value because the test and increment is at the bottom

(NEXT) part of the loop.
4. FOR/NEXT loops may be exited and entered at will.
5. Up to 20 loops may be active, and all must be properly nested.
6. The initial, step, and terminating values may be positive or negative.

The loop will terminate when the counter variable is greater than the

terminating value.

Examples: FOR N = J+1 TO Z/4 STEP X2
FOR A =-100 TO -1O STEP -2

-Z­

Gosub/Return Statements

Syn tax: GOSUB <Ii ne #>
RETURN

Description: The GOU statement call a subroutine starting at the line

number specified. If no such line exists, an error will result. The
RETURN statement terminates the subroutine and returns to the line following
the calling GOSUB. Subroutines may have multiple entry and return points.
Subroutines may be nested to a depth of 16.

If/Then Statement

Syntax: IF <expr> (relation> <expr> THEN <line #>
IF <expr> relation> expr> GOSUB <line #>

Description: The IF/THEN or IF/GOSUB is used to conditionally branch to
another statement or conditionally call a subroutine based on a comparison
of two expressions. Legal relations are:

<less than
>greater than
:::: equal to
>not equal to

< =<less than or equa 1 to
>- =>greater than or equal to

, If the statement is an IF/GOSU the subroutine specified will be called if
the relation is true and will return to the statement following. Because of
A/BASIC's multiple statement line capability, the IF statement can be used
as an IF .. THEN .. ELSE function if another statement follows on the same line.

Examples: If N = 100 THEN 1210
IF A+BCD GOSU 5500

IF x<= 200 THEN 240
IF AS=BS THEN 300

GOTO 1100

-28­

ON ERROR GOTO Statement

SYNTAX: ON ERROR GOTO
ON ERROR GOTO line#

This statement provides a error "trap" - the capability to trans­

fer program control when an error occurs.

When an ON ERROR GOTO statement is executed A/BASIC saves the address of
the line number specified in a temporary location. If any detectable error
occurs during execution of following statements, the program will transfer
to the line number given in the ON ERROR GOTO statement last executed. This
would normally be the line number where an error recovery routine begins.

If the ON ERROR GOTO statement is used WITHOUT a line number specified, it
has the effect of "turning off" the error trap - errors in fol lowing state­
ments will cause the program to stop and an error message to be displayed.

After an error has been detected, the ERR function may be used to access
a value which is an error code identifying the type of error which most

recently occured. The exact error codes are related to the error codes used,
:

by the host operating system and are listed in the appendix.

Example of usage:

100 ON ERROR GOTO 500

120 INPUT A{N)
400 N = N+I : IF N=5O THEN 600 : GOTO 120

500 PRINT "ILLEGAL INPUT ERROR - RETYPE"
600 GOTO 120

-29­

0n-Goto/on-Gosub Statements

Syntax: ON <expr> GOTO <line #>, <Tine #>, ...,<line #>
ON <expr> GOSU <line #>, <line #z, ... ,<line #>

Description: The expression is evaluated and one line number in the list
corresponding to the value is selected for a branch or subroutine call,
i.e., if the expression evaluates to 5, the fifth line number is used. If
the result of the expression is less than specified, the next statement is

executed.

Examples: ON A*(B+C) GOTO 200,350,110,250,350
ON N GOSUB 500,510,520,500,100

Stop Statement

Syntax: STOP

Description: The STOP statement is used to terminate execution of a program.
A message of the form

STOP <Tine #>
is displayed and control is returned to the interpreter command mode.

-30­

INPUT/OUTPUT STATEMENTS

All input and output statements use a buffer for intermediate storage
of data. It may contain up to 128 characters.

NOTE: A special form of all input/output statements designed for buffer
direct input/output using the special string variable BUF$ is described in
the STRING PROCESSING section.

Input Statement

Syntax: INPUT <var>, •.. ,<var>
Description: This statement causes prompt and space on the terminal device,
then reads characters into the input buffer until 128 characters have been
read or a carriage return symbol is read. A carriage return/line feed is
printed when the last character in input.
Entry of a CONTROL X will print *DEL* and CR/LF and reset the buffer. A
CONTROL O will backspace in the buffer and echo the delated characters.

The variables specified <var> may be numeric or string. subscripted or simple
type. When the program is "looking for" a number from the current position
in the input buffer. it will skip leading spaces) if any and read a minus
sign (if any) and up to five number characters. The numeric field is tenninatec
by a space, comma, or end of line. If a non-digit character is read, or any
other illegal condition a value of zero will be returned for the number.

If a string-type field is being processed, characters from the current position
will be accepted including blanks until the variable field is terminated by
a comma or end of line, or when it is "full". If no characters are available,
a null string will be returned

-31­

Examples:

INPUT A,B,S$,B$
INPUT A(N! ,N-1),B8,A(4,N)
INPUT A$(N) ,B$(N1),0$
INPUT B

Print Statement

Syntax: PRINT <out spec> <delimiter> ...<delimiter) <out spec

Description: This statement processes the list of out spec's and puts
the appropriate characters in the buffer. The buffer is then output to the

terminal device.

An <out spec) may be a string expression or a numeric expression, or the
output function TB expr which inserts spaces in the buffer until the position
<expr> is reached. Each item in the list is seperated by a delimiter which
is a comma or semicolon. The buffer is divided into sixteen 8-character
zones, which are effectively tab stops every eighth position. If comma is
used as a delimiter, the next item will begin at the first position of the next
zone. If a semicolon is used, NO spacing will occur. A semicolon at the end
of a Print statement will inhibit printing of a carriage/return/line feed

at the end of the line.

Examples:

PRINT A,B;C
PRINT A$(N);A$(N+l)
PRINT A,A$,B,BS
PRINT TAB(N=l),Z4
PRINT A;B;C;
PRINT A$;TAB(N+M) ; B$

-32­

A/BASIC DISK_ INPUTyQUrPUr OPERATIONS

A/BASIC uses the facilities of the host operating system for input
and output to sequential disk files. In order for programs generated
by A/BASIC to operate properly when disk functions are used, the memory

resident facilites of the DOS must be present.

Disk 1/0 in A/BASIC is channel-oriented meaning a file to be used for
input or output is "opened" and assigned a channel number by which all
further operations are performed. A/BASIC supports up to 10 channels
which is the maximum number of files that may be open at any time.

All disk file names are defined identically to the operating system's
file name conventions, i.e. the file name specifications are identical.
With the exception of the CHAIN statement, all files used by A/BASIC

are ASCII text files.

Many of the A/BASIC disk operations use the same DOS subroutines as
would be used by assembly-language programs so information as to disk

operations listed in the disk system manufacturer's software manual will
generally apply.

Note: In the descriptions of disk statements that follow the term "filnum"
refers to a channel number which is a constant which may range from to 9.

.-33­

OPEN Statement

SYNTAX: OPEN #filnum,strexp

This statement is used to open (initialize) a file for input or output, and

assign the file a channel number. One and only one file may be open on a
particular channel at a time. The DOS requires that a particular file be

open for either read or write, not both. The OPEN statement will first
search the file directory on the specified drive and open the file for
read if a file by the name specified is found. If no such file is found,
a file with the name specified will be opened (created) for write operation.
The STATUS function may be used after a file is opened to determine its

read or write status is necessary.

If an error occured during the open operation, the line specified by the
last ON ERROR GOTO statement to be executed will be transferred to. The
ERR function may be used to determine the error type.

An OPEN statement must be used prior to any I/O to the particular channel.
Also note that it is the only time that the file name is explicity used. All
further references to the particular file as long as it is open is by means of
the channel number.

The channel number must be a constant integer from to 9. The file name
specification is a string constant, variable or expression and must conform

to the DOS requirements for legal file name specifications (drive, name,
extension, etc.)

Below are some examples of legal usage of the OPEN statement:

OPEN #,"TEST"

A$="MASTER"
OPEN #2,A$

A$="MASTER"
0PEN#2,A$+"TT"

Opens the file TEST and assigns to channel 0

Opens the file MASTER on channel w

Opens the file MASTER. TT on drive #1 and
assigns it channel 2.

-34­

Close Statement

SYNTAX: CLOSE #fi1mum

This statement is used to close a file after I/0 operations are complete
and releases the channel. The file on the channel is closed for either
read or write automatically. The channel is then available for reassign­
ment to another file if desired.

Examples of legal usage:

CLOSE #2

-35­

READ Statement

SYNTAX: READ #filnum, varlist

The read statement causes the next record of the read file on the chan­
nel specified to be read into the A/BASIC I/O buffer. After the record
is read, data items corresponding to the items in the variable list will

be taken in order and stored in the appropriate variable locations. The
variable list may include numeric or string type which may use subscripted

variables.

The number of items given in the variable list should agree with the number

of items on the disk data record (except as noted below).
The file must be open for read and must be an ASCII text-type file. Disk

records are variable length.

Rules for reading different data types: the following rules apply to and
define the result of reading items from a disk record under various

circumstances.

NEXT VARIABLE IN

LIST IS ...

NUMERIC TYPE

STRING TYPE

NUMERIC

NUMBER

STRING OF
DIGITS

STRING

NUMBER if string
contains legal
decimal chars.

STRING

EMPTY

ERROR

NULL STRING

NEXT ITEM IN BUFFER (RECORD) IS

If there are more items on the record than variables in the list, they will

be ignored. Note that numeric variables are not stored as binary bytes,

rather they are converted to ASCII character representation before being
written and converted to binary after being read.

-36­

WRITE Statement

Syntax: WRITE #filnurn,outlist

The WRITE statement causes a record containing the data specified to
be written on the disk file as a single record. The file must be open

for use as a write file (see OPEN).

The output list is a sequence of string or numeric constants, variables
or expressions separated by commas. Each element in the list is consid­
ered to be an ~item'' within the disk record to be written. Strings and
numeric values are written in ASCII form. Type conversion is automatic
for numbers. The resulting record length must be less than or equal to

a total of 128 bytes.

Examples of legal usage:

WRITE #3,A,B,
WRITE #6,"DATA",N$,C$,Z$,T
WRITE #6,400+Z,A$+MID$(8$,4,M) ,M/2
R I T E #2,"MASTER F I L E N U MB E R " + S T R $ (A)

Results of writing disk record;

Each item is written on the record with a comma item seperator. The
records are variable length and use a carriage return character as an
end of record terminator. The statement (assume variable N=10):

WRITE #2,25,-499,"ORD",N
produces a disk record which has the following format (in hex):

32 35 2C 20 34 39 3
2 5 , - 4 0 0

2C 57 4F 52 44 2C 31 30 OD

, W O R D) 1 0 EOR

-37­

CHAINI Statement

Syntax: CHAIN strexp

This statement allows the BASIC program to load and begin execution of
another (or an additional) program. The program name is specified by the

string expression.

The program to be CHAINed must have the following characteristics;

1) It MUST have been saved on the disk as a binary format
program. A/BASIC produces HEX format object programs so
A/BASIC-produced programs must be loaded and then saved
in binary before being CHAINed.

2) A transfer address (starting address) must have been specified

when the binary program as saved.

WARNING: THIS STATEMENT LOADS A NEW MACHINE LANGUAGE PROGRAM ANO CAN
POSSIBLY RITE OVER THE INTERPRETER!!

RESTORE Statement

SCRATCH Statement

SYNTAX: RESTORE #filnum,
SCRATCH #filnum,

,#fi1num
,fi1num

These statements are used to close and then reopen files on the spec­
ified channel(s). The channels must have been previously OPENed.

The RESTORE statement closes a file open for either read or write and
opens it again for read. This is analogous to a "rewind" operation.

The SCRATCH statement closes a file open for either read or write and
opens it for write.
WARNING: The SCRATCH statement destroys the file being SCRATCHed!!!
It in effect deletes (destroys) the file and opens a new file with the
same name. When a file is SCRATCHed all previous data is lost.

Because of the sequential nature of files supported by the DOS, these
statements are used to "reposition" the internal "pointer" to the next
record to read from or written to.

Examples of legal usage:

SCRATCH #2,28

RESTORE #3

KILL Statement

SYNTAX: KILL<stringexpr>

The file name specified is PERMANENTLY DELETED from the system. Use with

great care as the file may not be recovered.
Example:

KILL "TEMP3"
KILL A$

-39­

DISK FUNCTIONS

The following functions are available for use with disk input/output

operations. All operate as the other BASIC functions and return a
numeric-type result.

EOF Function Syntax: EOF(#filnum}

Returns a value of 1 if an end of file condition exists on the file
assigned to the channel specified, otherwise returns W.
Example: IF EOF(#4) = 1 THEN 55

FREE Function Syntax: FREE(drive number)

Returns the number of sectors that are available (not used by existing

files) on the disk drive unit specified.

FILSIZ Function Syntax: FILSIZ(#filnum)

This function returns the current length of the file specified in sectors.
Example: IF FILSIZ(#A4) = 35 THEN 449

STATUS Function Syntax: STATUS(Fi1num)

Returns the current status of the file specified as follows:
0 = File is not currently open
1 = File is open for read
2= File is open for write

Examples:

ON STATUS(#8) G0T0 479,129
IF STATUS(#I) = I THEN 61
N2=STATUS (/15)

-40­

DUMMY STATEMENTS

Some compiler statement types cannot be executed by the interpreter, however

they will be accepted and treated as "comments" (similar to REM). A warning

message will be printed when these statements are encountered. This feature

is included so the ·interpreter can be used to prepare an entire compiler

source file.

Dummy Statements:

ON NM! GOTO
ON IRQ GOTO
ORG
OPT
STACK
SNITCH

GEN
IRQ ON
IRQ OFF
RETI
TASK

ERROR UMBER

04
05
06
07

08
09

10
11
12
13
15

17
18
19
20

21

23

24
29
30

34
36
37

62
63

64

A/BASIC INTERPRETER ERROR CODES

MEAN ING

Syntax error
Var name missing
Equal Sign missing
Undefined line reference

Parenthesis missing
Numeric expression missing or in error

Destination line number missing or in error

Number missing
Misnested FOR/NEXT loop
Symbol table overflow
Missing or illegal use of realtional operator
Quote missing at end of string
Illegal type or missing counter variable in FOR state

Redefined array
Error in array specification; subscript missing, or
too many subscripts
Error in array specification; subscript O or larger
than 255
Reference to undeclared array

Subscript error
String expression missing or in error
Too many FOR/NEXT loops active - max is 20

GOTO or GOSUB missing
Error in DISK I/O LIST
Return without Gosub

Multiply overflow
Divide by zero
Conversion error

-A2-

,.,

0100

DODO

TOP OF
RA.M

1,2000

FR.EE 5PAC.£

- - - - - - ~ - - - - - -
t

VAR/ABLE: STD-R.Abc

- - - - - - - - - - - -
M

PRD&J<ZAM $702Ac-E

(C.OM(J/Ll!. D)

-
SY /\,1 f,DL 7ABLE

AJO B tJFFE."R.S

3

TA_ts/osTANUTs

Tek?PR?erer?

I/o ROUT/ f,}Es

I)O TE
1,

l,,)D/?K I MG ST0RACE

-J.

